scholarly journals Research for reducing the Minimum Miscible Pressure of crude oil and carbon dioxide by injecting citric acid isobutyl ester

Author(s):  
Guangjuan Fan ◽  
Yuejun Zhao ◽  
Yilin Li ◽  
Xiaodan Zhang ◽  
Hao Chen

Carbon dioxide miscible flooding has become one of the important technologies for improving oil recovery. The Minimum Miscible Pressure (MMP) is the key parameter to realize miscible flooding. As the MMP in the research area is higher than the formation fracture pressure, miscible flooding cannot be formed. To address this problem, it is necessary to find a way to reduce the MMP. Citric acid isobutyl ester is chosen to reduce the MMP of carbon dioxide and crude oil in this research. The effect of citric acid isobutyl ester on reducing the MMP was measured by the method of long-slim-tube displacement experiment. The experiment results show that the MMP is 29.6 MPa and can be obviously reduced by injecting the slug of citric acid isobutyl ester. The MMP could decrease gradually with constantly adding the injected slug of citric acid isobutyl ester, but the decrease becomes smaller and smaller. The optimum injected slug size of the chemical reagent is 0.003 PV. Under the condition of the slug size, the MMP is reduced to 23.5 MPa and the reduction is 6.1 MPa.

2020 ◽  
Vol 13 (12) ◽  
pp. 9207-9215
Author(s):  
Yuejun Zhao ◽  
Guangjuan Fan ◽  
Yilin Li ◽  
Xiaodan Zhang ◽  
Hao Chen ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Guangjuan Fan ◽  
Yuejun Zhao ◽  
Xiaodan Zhang ◽  
Yilin Li ◽  
Hao Chen

Carbon dioxide (CO2) injection has become an important technology to enhance oil recovery in ultra-low permeability reservoirs. Compared with other CO2 flooding technologies, CO2 miscible flooding has a better development effect, and the minimum miscible pressure (MMP) is a key parameter to realize miscible flooding. Therefore, it is very important to accurately predict the MMP. The prediction methods of MMP generally include laboratory experiment method and theoretical calculation method. In this study, a long-slim-tube displacement experiment method was used to determine the MMP in the study area, and the experimental temperature and pressure were consistent with those under reservoir conditions. The research results show that the recovery ratio increased gradually with the increase of experimental pressure, but the increase amplitude gradually decreased. According to the relation curve between crude oil recovery ratio and experimental displacement pressure, when the experimental pressure was larger than 29.6 MPa, the recovery ratio did not increase significantly with the increase of displacement pressure, which indicates that the interfacial tension between crude oil and CO2 disappeared under this pressure and they reached a miscible state. It is speculated that the MMP between crude oil and CO2 system in the study area predicted by the long-slim-tube displacement experiment method was 29.6 MPa. The results of this study help to realize miscible flooding in ultra-low permeability reservoirs and thus enhance oil recovery.


2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


2019 ◽  
Vol 10 (3) ◽  
pp. 919-931 ◽  
Author(s):  
Sherif Fakher ◽  
Mohamed Ahdaya ◽  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Abstract Carbon dioxide (CO2) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during CO2 injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without CO2 in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying CO2 injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during CO2 injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during CO2 injection in different pore sizes in order to help reduce asphaltene-related problems that arise during CO2 injection in hydrocarbon reservoirs.


1999 ◽  
Vol 2 (02) ◽  
pp. 205-210 ◽  
Author(s):  
M. Raje ◽  
K. Asghari ◽  
S. Vossoughi ◽  
D.W. Green ◽  
G.P. Willhite

Summary Conformance control for carbon dioxide miscible flooding using gel has not been widely attempted. Laboratory research efforts at the University of Kansas have produced promising in-situ gelation techniques aimed at this application. Three in-situ gel systems were developed and tested in laboratory cores. Two systems are based on a new biopolymer, termed KUSP1, and the third gel system uses the reaction of sulfomethylated resorcinol and formaldehyde to form a gel. KUSP1 gel systems were studied using two different methods of inducing in-situ gelation. In the first method, gelation was accomplished by injecting CO2 at low pressure into the Berea sandstone core saturated by alkaline polymer solution. Permeability reduction to the brine and CO2 in the range of 80% was achieved. Stability of the gel was tested in the presence of supercritical CO2 When supercritical CO2 was used to induce in-situ gelation, the same degree of permeability reduction was achieved. The gel remained stable after the injection of many pore volumes of supercritical CO2The second method of initiating in-situ gelation involved the use of an ester. Hydrolysis of the ester, monoethylphthalate, in the alkaline polymer solution caused the pH to drop to levels where in-situ gelation occurred. The permeability of the treated core to supercritical carbon dioxide was about 1 md which was equivalent to a permeability reduction of 95%-97% of the initial brine permeability. The third gel system, based on the reaction of sulfomethylated resorcinol and formaldehyde (SMRF), was gelled in situ and contacted with both brine and supercritical CO2. Permeabilities to carbon dioxide on the order of 1 md or less were observed. This permeability is equivalent to a reduction of about 99% in the initial brine permeability. Reduced permeabilities were maintained after injecting many pore volumes of supercritical CO2 and brine. Introduction Carbon dioxide miscible flooding is one of the most important tertiary oil recovery techniques employed in the United States. However, the process experiences major difficulties in field application because of reservoir heterogeneity due to high permeability contrast. CO2 tends to finger through the high permeability zones and bypass the oil. Early CO2 production occurs with increased recycling and other operating costs. Different methods have been investigated for improving the overall efficiency of the CO2 flooding process. In almost all these methods, attempts have been made to achieve a favorable mobility ratio by affecting the CO2 relative permeability. Examples of these methods are:water alternating gas (WAG) process,1carbon dioxide-foam process,2 andviscosified carbon dioxide process.3 Another technology which is under study is permeability reduction by in-depth placement of polymer gels. The objective of this research is to reduce the permeability in permeable zones of the reservoir. Reduction of matrix permeability in the CO2 process has been studied by other investigators.4,5 No systems were found that gave satisfactory permeability reduction when exposed to prolonged injection of CO2. Three new in-situ gel systems developed and tested in our laboratory are described in this paper. Two of these systems are based on a biopolymer termed KUSP1.6,7 The third system is based on a modification of a previously reported organic crosslinking system. Experiment The experimental program consisted of gelling each polymer system in a 1 ft Berea core which was mounted in a core holder and determining the permeability of the treated rock to brine and carbon dioxide at supercritical conditions. Five separate tests were conducted. Dispersion tests were run in some tests to estimate the pore volume contacted by the injected fluids after treatment with a gelled polymer system. Equipment and Materials Experimental Apparatus. Fig. 1 is a schematic presentation of the experimental apparatus used in this work. An ISCO syringe pump was used for injecting CO2 brine, and gel solutions into the core. All the experiments were conducted at constant rate. The effluent of the core was collected by a fraction sample collector for further analysis. A TEMCO high-pressure core holder equipped with pressure ports was used. The rubber sleeve was filled with water and the injection pressure was kept at 500 psi below the sleeve pressure because higher sleeve pressures caused the rubber sleeve around the pressure taps to deform and seal off the pressure ports. One ft Berea cores, 2 in. in diameter, were used in all experiments. Pressure ports were located such that the core was divided into four sections. The first and fourth sections were 5 cm in length and sections two and three were 10 cm long. The pressure difference for each section and the overall pressure difference were measured by pressure transducers and recorded via a computer-based data gathering system. The apparatus was placed in an air bath in which the temperature of the core and the injected fluids was kept constant. The pressure of the core was maintained by a TEMCO back-pressure regulator connected to a cylinder containing nitrogen at high pressure. The back pressure was maintained at 1200 psi. Details of the experimental setup are presented elsewhere.8 Gels Produced from KUSP1. KUSP1 is an acronym for a biopolymer developed at the University of Kansas. The polymer is a ?-1,3-polyglucan and is produced by fermentation of a bacterium known as Alcaligenes faecalis and certain species of Agrobacterium.6 The polymer grows on the surface of the bacteria. During the fermentation process, the polymer laden bacteria aggregate and settle out from the growth medium. Polymer is extracted from the bacteria by suspension in dilute alkali. Neutralization of the alkaline polymer solution produces a hydrogel. The gelation process is reversible and the hydrogels are stable at high temperatures in neutral solutions. The polymer degrades in alkaline solution with time and at elevated temperatures.


2002 ◽  
Author(s):  
Alan Byrnes ◽  
G. Paul Willhite ◽  
Don Green ◽  
Martin Dubois ◽  
Richard Pancake ◽  
...  

2004 ◽  
Author(s):  
Alan Byrnes ◽  
G. Paul Willhite ◽  
Don Green ◽  
Martin Dubois ◽  
Richard Pancake ◽  
...  

2014 ◽  
Vol 962-965 ◽  
pp. 457-460 ◽  
Author(s):  
Jing Jie Yao ◽  
Zhi Ping Li ◽  
Yang Chen

Carbon dioxide miscible flooding in oil reservoirs is a general method of enhancing oil recovery, nevertheless, not all reservoirs adapt to this method. Therefore, evaluating the adaptability of carbon dioxide flooding reservoirs becomes an important problem which is urged to be solved. Through the research of carbon dioxide flooding situation and displacement mechanism, twelve factors which influenced the oil displacement effect could be obtained. Compared factors with oil recovery by means of the advanced analysis of SPSS, and chose ten factors to be the evaluating indices which could apply in cluster analysis. Through building mathematical model and clustering reservoirs, the adaptability of carbon dioxide flooding could be evaluated comprehensively. Apply this method to cluster nine typical reservoirs which have adopted carbon dioxide flooding, the results show that, this method can evaluate the adaptability of carbon dioxide flooding reservoirs, which is corresponding to the real exploitation effect.


Sign in / Sign up

Export Citation Format

Share Document