scholarly journals Investigation into the Adsorption of CO2, N2 and CH4 on Kaolinite Clay

2021 ◽  
pp. 103665
Author(s):  
Xidong Du ◽  
Dongdong Pang ◽  
Yuan Zhao ◽  
Zhenkun Hou ◽  
Hanglong Wang ◽  
...  
2020 ◽  
Vol 8 ◽  
Author(s):  
Eduardo Pérez-Botella ◽  
Raquel Martínez-Franco ◽  
Nuria González-Camuñas ◽  
Ángel Cantín ◽  
Miguel Palomino ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3084
Author(s):  
Hao Jing ◽  
Zhao Liu ◽  
Seng How Kuan ◽  
Sylvia Chieng ◽  
Chun Loong Ho

Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.


2019 ◽  
Vol 6 (5) ◽  
pp. 1177-1183 ◽  
Author(s):  
Minghui He ◽  
Tingting Xu ◽  
Zhenzhen Jiang ◽  
Luyao Yang ◽  
Ying Zou ◽  
...  

An NbO-type MOF based on an aminopyridine-heterobifunctionalized diisophthalate linker was synthesized, displaying markedly enhanced C2H2 and CO2 adsorption over CH4 compared to its parent compound.


2014 ◽  
Vol 63 ◽  
pp. 5870-5878 ◽  
Author(s):  
Stéphane Lafortune ◽  
Francis Adelise ◽  
Gaëtan Bentivegna ◽  
Christophe Didier ◽  
Régis Farret ◽  
...  

2013 ◽  
Vol 832 ◽  
pp. 589-595 ◽  
Author(s):  
N.A. Edama ◽  
A. Sulaiman ◽  
K.H. Ku Hamid ◽  
M.N. Muhd Rodhi ◽  
Mohibah Musa ◽  
...  

This study analyzed the effects of sulphuric acid (H2SO4) treatment on pysico-chemical properties and morphological changes of clay obtained from Sg. Sayong, Perak. The clay was ground and sieved to <150μm and treated with different concentrations of H2SO4. The treatment was completed by refluxing the clay with different concentration of H2SO4 (1M, 5M and 10M ) at 100 °C for 4 hours and followed by calcination at 500 °C for 1 hour. The physic-chemical properties and morphological changes of the untreated and treated clay were compared using Surface Area Analyser, X-Ray Diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), X-Ray Diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that acid treatment of 5M increased the surface area from 25 m2/g to 75 m2/g and the pore volume increased from 0.1518 cc/g to 0.3546 cc/g. The nanopore size of the clay decreased from 24.8 nm to 19.4 nm after treated with acid. This can be explained due to the elimination of the exchangeable cations and generation of microporosity. The results of XRF showed SiO2 increased from 58.34% to 74.52% and Al2O3 reduced from 34.6% to 18.31%. The mineral oxides such as Fe2O3, MgO, CaO, K2O and TiO2 also reduced. This concluded that H2SO4 treatment has led to significant removal of octahedral Al3+, Fe3+ cations and other impurities. In conclusion, this study showed the physico-chemical properties and morphology of Sayong clay were improved once treated with H2SO4 and therefore suggests better supporting material for enzyme immobilization.


Sign in / Sign up

Export Citation Format

Share Document