scholarly journals In vitro cytotoxicity against K562 tumor cell line, antibacterial, antioxidant, antifungal and catalytic activities of biosynthesized silver nanoparticles using Sophora pachycarpa extract

2022 ◽  
pp. 103677
Author(s):  
Zahra Kiani ◽  
Hamed Aramjoo ◽  
Elham Chamani ◽  
Mahin Siami-Aliabad ◽  
Sobhan Mortazavi-Derazkola
2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Paul Prasse ◽  
Pascal Iversen ◽  
Matthias Lienhard ◽  
Kristina Thedinga ◽  
Chris Bauer ◽  
...  

ABSTRACT Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drug components that are likely to achieve the highest efficacy for a cancer cell line at hand at a therapeutic dose. State of the art drug sensitivity models use regression techniques to predict the inhibitory concentration of a drug for a tumor cell line. This regression objective is not directly aligned with either of these principal goals of drug sensitivity models: We argue that drug sensitivity modeling should be seen as a ranking problem with an optimization criterion that quantifies a drug’s inhibitory capacity for the cancer cell line at hand relative to its toxicity for healthy cells. We derive an extension to the well-established drug sensitivity regression model PaccMann that employs a ranking loss and focuses on the ratio of inhibitory concentration and therapeutic dosage range. We find that the ranking extension significantly enhances the model’s capability to identify the most effective anticancer drugs for unseen tumor cell profiles based in on in-vitro data.


1992 ◽  
Vol 13 (7) ◽  
pp. 1209-1215 ◽  
Author(s):  
Wolfram C.M. Dempke ◽  
Sharon A. Shellard ◽  
Louise K. Hosking ◽  
Anne Marie J. Fichtinger-Schepman ◽  
Bridget T. Hill

2005 ◽  
Vol 26 (5) ◽  
pp. 908-915 ◽  
Author(s):  
Isabella T. Tai ◽  
Meiru Dai ◽  
Lan Bo Chen

1991 ◽  
Vol 174 (6) ◽  
pp. 1291-1298 ◽  
Author(s):  
H Hock ◽  
M Dorsch ◽  
T Diamantstein ◽  
T Blankenstein

The potential of interleukin 7 (IL-7) to induce an antitumor response in vivo was analyzed. Therefore, the IL-7 gene was expressed in the plasmacytoma cell line J558L. Although the growth of IL-7-producing cells was not retarded in vitro, the IL-7-producing cells were completely rejected upon injection into mice. Tumor rejection was observed only in syngeneic but not in nude mice. The tumor-suppressive effect could be abolished by the parallel injection of an anti-IL-7 monoclonal antibody. Immunohistochemical analysis revealed IL-7-dependent infiltration of the tumor tissue by CD4+ and CD8+ T lymphocytes, and also type 3 complement receptor-positive (CR3+) cells, predominantly macrophages. Depletion of T cell subsets in tumor-bearing mice showed the absolute dependence of the antitumor response on CD4+ cells, whereas tumor rejection was unaffected by depletion of CD8+ cells. In addition to CD4+ cells, CR3+ cells were also needed for tumor rejection. The antitumor effect of IL-7 was confirmed by expression of the IL-7 gene in a second tumor cell line of different cellular origin. Together, our results demonstrate that a high local IL-7 concentration at the tumor site obtained by tumor cell-targeted gene transfer leads to tumor rejection involving a cellular mechanism that seems to be different from the ones observed in analogous experiments with other cytokines.


Sign in / Sign up

Export Citation Format

Share Document