scholarly journals Fatty acid composition, TLC screening, ATR-FTIR analysis, anti-cholinesterase activity, and in vitro cytotoxicity to A549 tumor cell line of extracts of 3 macroalgae collected in Madeira

2019 ◽  
Vol 32 (2) ◽  
pp. 759-771 ◽  
Author(s):  
N. Nunes ◽  
G. P. Rosa ◽  
S. Ferraz ◽  
Maria Carmo Barreto ◽  
M. A. A. Pinheiro de Carvalho
Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1253
Author(s):  
Chae-Hyung Sun ◽  
Jae-Sung Lee ◽  
Jalil Ghassemi Nejad ◽  
Won-Seob Kim ◽  
Hong-Gu Lee

We evaluated the effects of a rumen-protected microencapsulated supplement from linseed oil (MO) on ruminal fluid, growth performance, meat quality, and fatty acid composition in Korean native steers. In an in vitro experiment, ruminal fluid was taken from two fistulated Holstein dairy cows. Different levels of MO (0%, 1%, 2%, 3%, and 4%) were added to the diet. In an in vivo experiment, eight steers (average body weight = 597.1 ± 50.26 kg; average age = 23.8 ± 0.12 months) were assigned to two dietary groups, no MO (control) and MO (3% MO supplementation on a DM basis), for 186 days. The in vitro study revealed that 3% MO is an optimal dose, as there were decreases in the neutral detergent fiber and acid detergent fiber digestibility at 48 h (p < 0.05). The in vivo study showed increases in the feed efficiency and average daily gain in the 3% MO group compared to the control group on days 1 to 90 (p < 0.05). Regarding meat quality, the shear force produced by the longissimus thoracis muscle in steers from the 3% MO group was lower than that produced by the control group (p < 0.05). Interestingly, in terms of the fatty acid profile, higher concentrations of C22:6n3 were demonstrated in the subcutaneous fat and higher concentrations of C18:3n3, C20:3n3, and C20:5n3 were found in the intramuscular fat from steers fed with 3% MO (p < 0.05). Our results indicate that supplementation with 3% MO supplements improves the growth performance and meat quality modulated by the omega-3 fatty acid content of meat in Korean native steers.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Paul Prasse ◽  
Pascal Iversen ◽  
Matthias Lienhard ◽  
Kristina Thedinga ◽  
Chris Bauer ◽  
...  

ABSTRACT Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drug components that are likely to achieve the highest efficacy for a cancer cell line at hand at a therapeutic dose. State of the art drug sensitivity models use regression techniques to predict the inhibitory concentration of a drug for a tumor cell line. This regression objective is not directly aligned with either of these principal goals of drug sensitivity models: We argue that drug sensitivity modeling should be seen as a ranking problem with an optimization criterion that quantifies a drug’s inhibitory capacity for the cancer cell line at hand relative to its toxicity for healthy cells. We derive an extension to the well-established drug sensitivity regression model PaccMann that employs a ranking loss and focuses on the ratio of inhibitory concentration and therapeutic dosage range. We find that the ranking extension significantly enhances the model’s capability to identify the most effective anticancer drugs for unseen tumor cell profiles based in on in-vitro data.


1992 ◽  
Vol 13 (7) ◽  
pp. 1209-1215 ◽  
Author(s):  
Wolfram C.M. Dempke ◽  
Sharon A. Shellard ◽  
Louise K. Hosking ◽  
Anne Marie J. Fichtinger-Schepman ◽  
Bridget T. Hill

2005 ◽  
Vol 26 (5) ◽  
pp. 908-915 ◽  
Author(s):  
Isabella T. Tai ◽  
Meiru Dai ◽  
Lan Bo Chen

Author(s):  
M. Guidoni ◽  
M.M. de Christo Scherer ◽  
M.M. Figueira ◽  
E.F.P. Schmitt ◽  
L.C. de Almeida ◽  
...  

1991 ◽  
Vol 174 (6) ◽  
pp. 1291-1298 ◽  
Author(s):  
H Hock ◽  
M Dorsch ◽  
T Diamantstein ◽  
T Blankenstein

The potential of interleukin 7 (IL-7) to induce an antitumor response in vivo was analyzed. Therefore, the IL-7 gene was expressed in the plasmacytoma cell line J558L. Although the growth of IL-7-producing cells was not retarded in vitro, the IL-7-producing cells were completely rejected upon injection into mice. Tumor rejection was observed only in syngeneic but not in nude mice. The tumor-suppressive effect could be abolished by the parallel injection of an anti-IL-7 monoclonal antibody. Immunohistochemical analysis revealed IL-7-dependent infiltration of the tumor tissue by CD4+ and CD8+ T lymphocytes, and also type 3 complement receptor-positive (CR3+) cells, predominantly macrophages. Depletion of T cell subsets in tumor-bearing mice showed the absolute dependence of the antitumor response on CD4+ cells, whereas tumor rejection was unaffected by depletion of CD8+ cells. In addition to CD4+ cells, CR3+ cells were also needed for tumor rejection. The antitumor effect of IL-7 was confirmed by expression of the IL-7 gene in a second tumor cell line of different cellular origin. Together, our results demonstrate that a high local IL-7 concentration at the tumor site obtained by tumor cell-targeted gene transfer leads to tumor rejection involving a cellular mechanism that seems to be different from the ones observed in analogous experiments with other cytokines.


Sign in / Sign up

Export Citation Format

Share Document