Can Abnormal Spinopelvic Relationships be Identified by Anteroposterior Pelvic Radiographs?

Author(s):  
Christopher N. Carender ◽  
Bennett W. Feuchtenberger ◽  
David E. DeMik ◽  
Qiang An ◽  
Timothy S. Brown ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (6) ◽  
pp. 522
Author(s):  
Feng-Yu Liu ◽  
Chih-Chi Chen ◽  
Chi-Tung Cheng ◽  
Cheng-Ta Wu ◽  
Chih-Po Hsu ◽  
...  

Automated detection of the region of interest (ROI) is a critical step in the two-step classification system in several medical image applications. However, key information such as model parameter selection, image annotation rules, and ROI confidence score are essential but usually not reported. In this study, we proposed a practical framework of ROI detection by analyzing hip joints seen on 7399 anteroposterior pelvic radiographs (PXR) from three diverse sources. We presented a deep learning-based ROI detection framework utilizing a single-shot multi-box detector with a customized head structure based on the characteristics of the obtained datasets. Our method achieved average intersection over union (IoU) = 0.8115, average confidence = 0.9812, and average precision with threshold IoU = 0.5 (AP50) = 0.9901 in the independent testing set, suggesting that the detected hip regions appropriately covered the main features of the hip joints. The proposed approach featured flexible loose-fitting labeling, customized model design, and heterogeneous data testing. We demonstrated the feasibility of training a robust hip region detector for PXRs. This practical framework has a promising potential for a wide range of medical image applications.


2021 ◽  
Vol 9 (2) ◽  
pp. 232596712097789
Author(s):  
Rodolfo Morales-Avalos ◽  
Adriana Tapia-Náñez ◽  
Mario Simental-Mendía ◽  
Guillermo Elizondo-Riojas ◽  
Michelle Morcos-Sandino ◽  
...  

Background: Radiographic findings related to the cam and pincer variants of femoroacetabular impingement (FAI) include measurements of the alpha angle and lateral center-edge angle (LCEA). The function of these radiographic findings has been put into question because of high heterogeneity in reported studies. Purpose: The aim of this study was 3-fold: (1) to determine the prevalence of cam and pincer variants according to sex and age on anteroposterior (AP) pelvic radiographs from an asymptomatic nonathletic population, (2) to identify the most common radiographic signs of cam- and pincer-type variants, and (3) to determine if there are variations in the prevalence of these radiographic signs according to sex and age. Study Design: Cross-sectional study; Level of evidence, 3. Methods: There were 3 independent observers who retrospectively analyzed the 939 AP pelvic radiographs (1878 hips) of patients aged 18 to 50 years who did not have hip symptoms and who were not professional athletes. The prevalence of the cam and pincer variants according to the alpha angle and LCEA, respectively, and the presence of other radiographic signs commonly associated with these variables were determined in the overall population and by subgroup according to sex and age group (18-30, 31-40, and 41-50 years). Descriptive and inferential statistics were used to analyze the study sample. Results: The mean age of the included population was 31.0 ± 9.2 years, and 68.2% were male. The prevalence of the cam-type variant was 29.7% (558/1878), and that of the pincer-type variant was 24.3% (456/1878). The radiographic signs that were most associated with the cam and pincer variants were a pistol-grip deformity and the crossover sign, respectively. Significant differences ( P < .001) in the prevalence of these variants were identified between men and women in both variants. No differences were observed in the alpha angle or LCEA according to sex or age. Conclusion: Radiographic findings suggestive of FAI had significant variations with respect to sex and age in this study sample. This study provides information to determine the prevalence of these anatomic variants in the general population.


Author(s):  
Elizabeth Vogel ◽  
Thomas Leaver ◽  
Fiona Wall ◽  
Ben Johnson ◽  
Michael Uglow ◽  
...  

Abstract Objective There are no data on the effect of X-Ray irradiation to the vulnerable pelvic organs of babies during DDH follow-up. This study aims to calculate, for the first time, the radiation exposure to infants during follow-up for DDH harness treatment, and thus quantify the lifetime risk of malignancy. Methods Patients who had completed 5 years’ follow-up following successful Pavlik harness treatment were identified from the hospital DDH database. The radiation dose was extracted from the Computerised Radiology Information System database for every radiograph of every patient. The effective dose (ED) was calculated using conversion coefficients for age, sex and body region irradiated. Cumulative ED was compared to Health Protection Agency standards to calculate lifetime risk of malignancy from the radiographs. Results All radiographs of 40 infants, successfully treated in Pavlik harness for DDH, were assessed. The mean number of AP pelvis radiographs was 7.00 (range: 6–9, mode: 7). The mean cumulative ED was 0.25 mSv (Range: 0.11–0.46, SD: 0.07). This is far lower than the annual ‘safe’ limit for healthcare workers of 20 mSv and is categorised as “Very Low Risk”. Conclusion Clinicians involved in the treatment DDH can be re-assured that the cumulative radiation exposure from pelvic radiographs following Pavlik harness treatment is “Very Low Risk”. Whilst being mindful of any radiation exposure in children, this study provides a scientific answer that help addresses parental concerns.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Anne K. Misiura ◽  
Autumn D. Nanassy ◽  
Jacqueline Urbine

Trauma patients in a Level I Pediatric Trauma Center may undergo CT of the abdomen and pelvis with concurrent radiograph during initial evaluation in an attempt to diagnose injury. To determine if plain digital radiograph of the pelvis adds additional information in the initial trauma evaluation when CT of the abdomen and pelvis is also performed, trauma patients who presented to an urban Level I Pediatric Trauma Center between 1 January 2010 and 7 February 2017 in whom pelvic radiograph and CT of the abdomen and pelvis were performed within 24 hours of each other were analyzed. A total of 172 trauma patients had pelvic radiograph and CT exams performed within 24 hours of each other. There were 12 cases in which the radiograph missed pelvic fractures seen on CT and 2 cases in which the radiograph suspected a fracture that was not present on subsequent CT. Furthermore, fractures in the pelvis were missed on pelvic radiographs in 12 of 35 cases identified on CT. Sensitivity of pelvic radiograph in detecting fractures seen on CT was 65.7% with a 95% confidence interval of 47.79-80.87%. Results suggest that there is no added diagnostic information gained from a pelvic radiograph when concurrent CT is also obtained, a practice which exposes the pediatric trauma patient to unnecessary radiation.


2019 ◽  
Vol 29 (10) ◽  
pp. 5469-5477 ◽  
Author(s):  
Chi-Tung Cheng ◽  
Tsung-Ying Ho ◽  
Tao-Yi Lee ◽  
Chih-Chen Chang ◽  
Ching-Cheng Chou ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Janet M Chan

Soft tissue shadows are commonly seen on pelvic radiographs, and radiographers may overlook or are unaware that these shadows could be artefacts. In a case study, shadow of a penis superimposed with the fracture lines at pubic ramus and it was questioned whether a fracture of ramus ischio-pubis is present. Further radiographic views were performed to demonstrate the fractures without any artefact. There are other possible pelvic artefacts that may be seen and neglected on pelvic radiographs, thus it may lead to misdiagnosis of pelvic fracture. This essay should be served as a reminder for radiographers to recognize artefacts and differentiate it from pathology.


2008 ◽  
Vol 466 (4) ◽  
pp. 813-819 ◽  
Author(s):  
Anders Troelsen ◽  
Steffen Jacobsen ◽  
Lone Rømer ◽  
Kjeld Søballe
Keyword(s):  

2007 ◽  
Vol 48 (6) ◽  
pp. 658-664 ◽  
Author(s):  
O. A. Foss ◽  
J. Klaksvik ◽  
P. Benum ◽  
S. Anda

Background: The rotation ratios method describes rotations between pairs of sequential pelvic radiographs. The method seems promising but has not been validated. Purpose: To validate the accuracy of the rotation ratios method. Material and Methods: Known pelvic rotations between 165 radiographs obtained from five skeletal pelvises in an experimental material were compared with the corresponding calculated rotations to describe the accuracy of the method. The results from a clinical material of 262 pelvic radiographs from 46 patients defined the ranges of rotational differences compared. Repeated analyses, both on the experimental and the clinical material, were performed using the selected reference points to describe the robustness and the repeatability of the method. Results: The reference points were easy to identify and barely influenced by pelvic rotations. The mean differences between calculated and real pelvic rotations were 0.0° (SD 0.6) for vertical rotations and 0.1° (SD 0.7) for transversal rotations in the experimental material. The intra- and interobserver repeatability of the method was good. Conclusion: The accuracy of the method was reasonably high, and the method may prove to be clinically useful.


Sign in / Sign up

Export Citation Format

Share Document