Osteochondral grafting for cartilage defects in the patellar grooves of bilateral knee joints

Author(s):  
Yasuaki Nakagawa ◽  
Yoshitaka Matsusue ◽  
Takashi Suzuki ◽  
Hiroshi Kuroki ◽  
Takashi Nakamura
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ashvin K. Dewan ◽  
Matthew A. Gibson ◽  
Jennifer H. Elisseeff ◽  
Michael E. Trice

Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques.Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks.Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue.Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.


1997 ◽  
Vol 117 (1-2) ◽  
pp. 105-107
Author(s):  
Y. Sumen ◽  
M. Ochi ◽  
Y. Soda ◽  
Y. Ikuta

10.29007/cmqr ◽  
2018 ◽  
Author(s):  
Nima Befrui ◽  
Jens Elsner ◽  
Achim Flesser ◽  
Jacqueline Huvanandana ◽  
Oussama Jarrousse ◽  
...  

Vibroarthrography describes the detection of joint pathologies by analysis of vibrations emitted during joint movement. In our study, 30 healthy volunteers and 39 patients with various degrees of chondromalacia or osteoarthritis were selected and accelerometers and piezoelectric sensors were placed on prominent bone structures of patients’ knee joints (patella, lateral and medial tibial plateau) in order to measure the structure-borne noise during active extension and flexion of the joint. After semi-automatic signal segmentation had been applied to isolate flexion and extension cycles, features based on relative high-frequency components were generated. Using machine learning with a linear support vector machine, these signals were classified as healthy, exhibiting chondromalacia °II-IV or osteoarthritis. 84% of healthy subjects were identified correctly, while the classification accuracy for individual stages of chondromalacia or osteoarthritis ranged from 11% (CM °II) to 50% (CM °III). In order to make results easily interpretable without resorting to machine learning techniques, we propose a normalized score between 0 and 1 and show that this "v-score" for flexion and extension significantly correlates with the achieved multi-class classification. Vibroarthrography may qualify as potent screening tool for the detection and grading of joint cartilage defects and aid physicians in the choice and estimation of urgency of further diagnostic and therapeutic decisions.


Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 756
Author(s):  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki ◽  
Koichi Mori

Background and Objectives: The purpose of this study was to compare the side-to-side differences in knee joint movement and moment for the degree of pain in the walking stance phase in patients with bilateral knee osteoarthritis (KOA) of comparable severity. We hypothesized that knee joint movement and moment on the side with strong pain were lower compared with the side with weak pain. Materials and Methods: We included 11 patients diagnosed with bilateral severe KOA. In all patients’ left and right knees, the Kellgren–Lawrence radiographic scoring system grade was level 4, and the femorotibial angle and knee range of motion were equivalent. Following patients’ interviews with an orthopedic surgeon, we performed a comparative study with KOA with strong pain (KOAs) as the strong painful side and KOA with weak pain (KOAw) as the weak painful side. Data for changes in bilateral knee joint angles in three dimensions during the stance phase and bilateral knee sagittal and frontal moments exerted in the early and late stance phases were extracted from kinematics and kinetics analyses. Results: Three-dimensional joint movements in the knee joint were not significantly different in all phases between KOAs and KOAw. Knee extensor moment in the early stance phase in KOAs was significantly smaller than that in KOAw. Knee abductor moment in the early and late stance phase was not significantly different between KOAs and KOAw. Conclusions: Although we found no difference in joint motion in bilateral knee joints, knee extensor moment on the side with strong pain was decreased. In patients with bilateral severe KOA, it was suggested that the magnitude of knee pain contributed to the decrease in knee joint function.


2017 ◽  
Vol 14 (4) ◽  
pp. 544-547
Author(s):  
Nobuyuki Kumahashi ◽  
Suguru Kuwata ◽  
Hiroshi Takuwa ◽  
Soichiro Yamamoto ◽  
Yuji Uchio

Bone Research ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Courtney M. Mazur ◽  
Jonathon J. Woo ◽  
Cristal S. Yee ◽  
Aaron J. Fields ◽  
Claire Acevedo ◽  
...  

Abstract Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document