scholarly journals BIM2BEM integrated approach: Examining status of the adoption of building information modelling and building energy models in Egyptian architectural firms

2018 ◽  
Vol 9 (4) ◽  
pp. 1781-1790 ◽  
Author(s):  
Laila Mohamed Khodeir ◽  
Ashraf Ali Nessim
2014 ◽  
Vol 75 (1) ◽  
Author(s):  
Zahrizan Zakari ◽  
Nasly Mohamed Ali Ali ◽  
Ahmad Tarmizi Haron ◽  
Amanda Marshall Ponting ◽  
Zuhairi Abd. Hamid

In Malaysia, Building Information Modelling (BIM) has recently gained attraction from construction players and some of them have applied it to several projects. By utilising the BIM process, the construction players have the opportunity to plan, coordinate and design in an integrated approach. This is one of the many benefits that they could gain and resulting in increased productivity. Despite these benefits, the implementation of BIM in the Malaysian construction industry is still lagging behind Singapore, for instance. Thus, it warrants a study such as the present to determine what are the actual barriers that hamper its implementation and what are the driving factors that could enhance its pace of implementation in the Malaysian construction industry. In this study, a questionnaire survey based on Convenience Sampling Method was carried out to gather the possible barriers and driving factors for BIM implementation among the Malaysian construction players. Additionally, Relative Importance Indices (RII) were used to analyse the data obtained and to identify those barriers and driving factors for the implementation of BIM in this country. Consequently, results of this study revealed that the main barriers for implementing the BIM are: 1) Lack of knowledge about BIM, 2) Reluctance and/or no insistence shown by the Malaysian construction industry players (Clients, Contractors and Consultants alike) on the use or implementation of BIM. The driving factors, on the other hand, that could lead to the speeding up of the implementation of BIM are: 1) Support and enforcing the implementation of BIM by the Government, 2) promote BIM training program and 3) Initiatives of senior management of the related industry players. In conclusion, for successful wide spread application of BIM in Malaysia, a good push from the government alone is far from enough. All other construction industry players mentioned must assume their roles well in promoting the use of BIM in their construction projects.


2018 ◽  
Vol 9 (2) ◽  
pp. 137-144 ◽  
Author(s):  
S. Chen ◽  
R. Jin ◽  
M. Alam

Building Information Modelling (BIM) has become an emerging digital technology in the architecture, engineering and construction (AEC) industry. There is a growing demand on applying BIM for sustainable design including the building energy simulation (BES). Lack of sufficient interoperability has caused barriers to utilize the information from BIM for BES. In this study, the interoperability between BIM and four different BES tools (i.e., Ecotect, EQUEST, Design Builder and IES-VE) was explored by using a case study of a residential building in the design stage. The misrepresented information from BIM to multiple BES tools were identified based on six different categories of building information parameters. The research proposed an approach of creating gbXML file with an improved integrity of information in BIM. Overall, this study would lead to further work in developing platforms for improving the information transformation from BIM to BES.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8487
Author(s):  
Serdar Durdyev ◽  
Gholamreza Dehdasht ◽  
Saeed Reza Mohandes ◽  
David J. Edwards

In recent years, many researchers across the world have addressed the implementation of Building Information Modelling (BIM) in the energy assessment of the built environment. However, several potential issues still need to be resolved in order to utilise the benefits provided by BIM to a maximum degree. To fill this gap, a systematic literature review is conducted in this study to critically investigate the utilisation of BIM tools in energy assessment. To achieve the above-mentioned objective, after shortlisting the relevant papers published hitherto, using keyword searching, a systematic review was undertaken, including the application of BIM in the contexts of different countries, types of BIM tools, BIM and Life Cycle Assessment (LCA) integration, energy affiliations, stakeholders’ involvement and their roles, uncertainty, and sensitivity analysis. The outcomes show the most widely used and effective BIM tools in different types of construction projects in various countries. The review of the literature clearly shows that BIM tools can effectively be used in the assessment of energy performance of buildings. The article gives insight to engineers, architecture, and decision makers to carefully select appropriate BIM tools in terms of energy assessment.


Author(s):  
Vishak Dudhee ◽  
Vladimir Vukovic

AbstractBuildings consist of numerous energy systems, including heating, ventilation, and air conditioning (HVAC) systems and lighting systems. Typically, such systems are not fully visible in operational building environments, as some elements remain built into the walls, or hidden behind false ceilings. Fully visualising energy systems in buildings has the potential to improve understanding of the systems’ performance and enhance maintenance processes. For such purposes, this paper describes the process of integrating Building Information Modelling (BIM) models with Augmented Reality (AR) and identifies the current limitations associated with the visualisation of building energy systems in AR using BIM. Testing of the concept included creating and superimposing a BIM model of a room in its actual physical environment and performing a walk-in analysis. The experimentation concluded that the concept could result in effective visualisation of energy systems with further development on the establishment of near real-time information.


2018 ◽  
Vol 169 ◽  
pp. 01004 ◽  
Author(s):  
Shang-yuan Chen

This study concerning green BIM focuses on the integrated application of Building Information Modelling (BIM) and building performance analysis (BPA) software as tools for the design and analysis of building projects, and employs a sequential decision-making cycle and continuously improving design to achieve an optimal proposal consistent with environmental effectiveness. Taking a new Taichung hotel construction project energy consumption design optimization as an example, this study relied on the steps of (1) Determination of the scope of discussion of the proposal within the building life cycle, (2) Setting of energy conservation targets, (3) Accessing to external climate data, (4) Entering internal settings, (5) Implementation of energy conservation calculation module, (6) Visualization analysis and hot spot tracking (7) Proposal Revision, and (8) Optimal proposal, to verify the green BIM concept. With regard to the setting of energy conservation targets, this study recommends that building energy use intensity (EUI) be used as an energy load measurement unit of integrated performance indicators, and employs performance optimization percentage as a rating criterion. In accordance with this method, green BIM combined with assessment of green building indicators is as a means of facilitating integrated design and analysis decision-making.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 22 ◽  
Author(s):  
Bárbara Torregrosa-Jaime ◽  
Pedro J. Martínez ◽  
Benjamín González ◽  
Gaspar Payá-Ballester

Variable refrigerant flow (VRF) systems are one possible tool to meet the objective that all new buildings must be nearly zero-energy buildings by 31 December 2020. Building Information Modelling (BIM) is a methodology that centralizes building construction project information in a digital model promoting collaboration between all its agents. The objectives of this work were to develop a more precise model of the VRF system than the one available in EnergyPlus version 8.9 (US Department of Energy) and to study the operation of this system in an office building under different climates by implementing the building energy simulation in an Open BIM workflow. The percentage deviation between the estimation of the VRF energy consumption with the standard and the new model was 6.91% and 1.59% for cooling and heating respectively in the case of Barcelona and 3.27% and 0.97% respectively in the case of Madrid. The energy performance class of the analysed building was A for each climatic zone. The primary energy consumption of the office building equipped with the VRF system was of 65.8 kWh/(m2·y) for the Mediterranean climate of Barcelona and 72.4 kWh/(m2·y) for the Continental climate of Madrid.


Sign in / Sign up

Export Citation Format

Share Document