scholarly journals WITHDRAWN: Investigation of Marangoni convection and irregular heat source in third grade nanomaterial flow

2022 ◽  
pp. 101645
Author(s):  
T. Hayat ◽  
Inayat Ullah ◽  
Sohail A. Khan ◽  
A. Alsaedi
2020 ◽  
Vol 32 (11) ◽  
pp. 113602
Author(s):  
U. S. Mahabaleshwar ◽  
K. R. Nagaraju ◽  
P. N. Vinay Kumar ◽  
Martin Ndi Azese

2017 ◽  
Author(s):  
Izzati Khalidah Khalid ◽  
Nor Fadzillah Mohd Mokhtar ◽  
Zailan Siri ◽  
Zarina Bibi Ibrahim ◽  
Siti Salwa Abd Gani

2017 ◽  
Vol 49 (8) ◽  
pp. 1660-1668 ◽  
Author(s):  
Basavarajappa Mahanthesh ◽  
Bijjanal Jayanna Gireesha ◽  
Ballajja Chandra PrasannaKumara ◽  
Nagavangala Shankarappa Shashikumar

Author(s):  
N. Manjunatha ◽  
R. Sumithra ◽  
R.K. Vanishree

The physical configuration of the problem is a porous-fluid layer which is horizontally unbounded, in the presence of uniform heat source/sink in the layers enclosed by adiabatic and isothermal boundaries. The problem of double diffusive Bènard-Marangoni convection in the presence of vertical magnetic field is investigated on this porous-fluid system for non-Darcian case and is subjected to uniform and nonuniform temperature gradients. The eigenvalue, thermal Marangoni number is obtained in the closed form for lower rigid and upper free with surface tension velocity boundary conditions. The influence of various parameters on the Marangoni number against thermal ratio is discussed. It is observed that the heat absorption in the fluid layer and the applied magnetic field play an important role in controlling Benard-Marangoni convection. The parameters which direct this convection are determined and the effect of porous parameter is relatively interesting.


Author(s):  
M. Ijaz Khan ◽  
Yu-Ming Chu ◽  
Faris Alzahrani ◽  
Aatef Hobiny

This communication is to analyze the Marangoni convection MHD flow of nanofluid. Marangoni convection is very useful physical phenomena in presence of microgravity conditions which is generated by gradient of surface tension at interface. We have also studied the swimming of migratory gyrotactic microorganisms in nanofluid. Flow is due to rotation of disk. Heat and mass transfer equations are examined in detail in the presence of heat source sink and Joule heating. Nonlinear mixed convection effect is inserted in momentum equation. Appropriate transformations are applied to find system of equation. HAM technique is used for convergence of equations. Radial and axial velocities, concentration, temperature, motile microorganism profile, Nusselt number and Sherwood number are sketched against important parameters. Marangoni ratio parameter and Marangoni number are increasing functions of axial and radial velocities. Temperature rises for Marangoni number and heat source sink parameter. Activation energy and chemical reaction rate parameter have opposite impact on concentration profile. Motile density profile decays via Peclet number and Schmidt number. Magnitude of Nusselt number enhances via Marangoni ratio parameter.


Sign in / Sign up

Export Citation Format

Share Document