Anomalous ionospheric disturbances over South Korea prior to the 2011 Tohoku earthquake

2016 ◽  
Vol 57 (1) ◽  
pp. 302-308 ◽  
Author(s):  
Byung-Kyu Choi ◽  
Sang Jeong Lee
Radio Science ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 507-514 ◽  
Author(s):  
Geoff Crowley ◽  
Irfan Azeem ◽  
Adam Reynolds ◽  
Timothy M. Duly ◽  
Patrick McBride ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 120-124
Author(s):  
Michael Timothy Tasliman ◽  
Hongsik Yun

On 11 March 2011, a great earthquake with magnitude 9.0 has occurred in Tohoku, Japan, more than 1,000 km from South Korea. In fact, seismicity rate in South Korea has increased since the 2011 Tohoku earthquake, although detailed evaluation of its effects on the Korean Peninsula remains incomplete. Now, the high precision space geodesy techniques play a key role in monitoring the crustal strain state and energy variation. This study attempts to evaluate crustal deformation around the Korean Strait after 2011 Tohoku earthquake through a detailed analysis recorded by GPS. Moreover, this study found a different fault characteristic in Japan affect the station displacement prior to GPS data observed among 2011 to 2012. After a year, the strain in Japan found in direction WNW-ESE, while in Korea found in direction WSW-ENE. This finding suggests the likelihood of the existence of a certain tectonic line between the southern part of Korea peninsula and Japan.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1000
Author(s):  
Jin Wang ◽  
Gang Chen ◽  
Tao Yu ◽  
Zhongxin Deng ◽  
Xiangxiang Yan ◽  
...  

The 2011 Tohoku earthquake and the following enormous tsunami caused great disturbances in the ionosphere that were observed in various regions along the Pacific Ocean. In this study, the oblique-incidence ionosonde detection network located in North China was applied to investigate the inland ionospheric disturbances related to the 2011 tsunamigenic earthquake. The ionosonde network consists of five transmitters and 20 receivers and can monitor regional ionosphere disturbances continuously and effectively. Based on the recorded electron density variations along the horizontal plane, the planar middle-scale ionospheric disturbances (MSTIDs) associated with the 2011 Tohoku tsunamigenic earthquake were detected more than 2000 km west of the epicenter about six hours later. The MSTIDs captured by the Digisonde, high-frequency (HF) Doppler measurement, and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellite provided more information about the far-field inland propagation characteristics of the westward propagating gravity waves. The results imply that the ionosonde network has the potential for remote sensing of ionospheric disturbances induced by tsunamigenic earthquakes and provide a perspective for investigating the propagation process of associated gravity waves.


Sign in / Sign up

Export Citation Format

Share Document