Signature of a mesospheric bore in 557.7 nm airglow emission using all-sky imager at Hanle (32.7oN, 78.9oE)

Author(s):  
A. Guharay ◽  
S. Mondal ◽  
S. Sarkhel ◽  
M. Sivakandan ◽  
M.V. Sunil Krishna
Keyword(s):  
1997 ◽  
Author(s):  
Janet E. Shields ◽  
Richard W. Johnson ◽  
Monette E. Karr ◽  
Richard A. Weymouth ◽  
David S. Sauer
Keyword(s):  

Solar Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 213-228 ◽  
Author(s):  
B. Nouri ◽  
P. Kuhn ◽  
S. Wilbert ◽  
N. Hanrieder ◽  
C. Prahl ◽  
...  

1999 ◽  
Vol 17 (4) ◽  
pp. 463-489 ◽  
Author(s):  
P. Prikryl ◽  
J. W. MacDougall ◽  
I. F. Grant ◽  
D. P. Steele ◽  
G. J. Sofko ◽  
...  

Abstract. A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0). The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.Key words. Ionosphere (polar ionosphere). Magneto- spheric physics (magnetosphere-ionosphere interactions; polar wind-magnetosphere interactions).


2009 ◽  
Vol 27 (6) ◽  
pp. 2593-2598 ◽  
Author(s):  
J. V. Bageston ◽  
C. M. Wrasse ◽  
D. Gobbi ◽  
H. Takahashi ◽  
P. B. Souza

Abstract. An airglow all-sky imager was operated at Comandante Ferraz Antarctica Station (62.1° S, 58.4° W), between April and October of 2007. Mesospheric gravity waves were observed using the OH airglow layer during 43 nights with good weather conditions. The waves presented horizontal wavelengths between 10 and 60 km and observed periods mainly distributed between 5 and 20 min. The observed phase speeds range between 5 m/s and 115 m/s; the majority of the wave velocities were between 10 and 60 m/s. The waves showed a preferential propagation direction towards the southwest in winter (May to July), while during spring (August to October) there was an anisotropy with a preferential propagation direction towards the northwest. Unusual mesospheric fronts were also observed. The most probable wave source could be associated to orographic forcing, cold fronts or strong cyclonic activity in the Antarctica Peninsula.


2016 ◽  
Vol 9 (5) ◽  
pp. 2015-2042 ◽  
Author(s):  
Florian Ewald ◽  
Tobias Kölling ◽  
Andreas Baumgartner ◽  
Tobias Zinner ◽  
Bernhard Mayer

Abstract. The new spectrometer of the Munich Aerosol Cloud Scanner (specMACS) is a multipurpose hyperspectral cloud and sky imager designated, but is not limited to investigations of cloud–aerosol interactions in Earth's atmosphere. With its high spectral and spatial resolution, the instrument is designed to measure solar radiation in the visible and shortwave infrared region that is reflected from, or transmitted through clouds and aerosol layers. It is based on two hyperspectral cameras that measure in the solar spectral range between 400 and 2500 nm with a spectral bandwidth between 2.5 and 12.0 nm. The instrument was operated in ground-based campaigns as well as aboard the German High Altitude LOng Range (HALO) research aircraft, e.g., during the ACRIDICON-CHUVA campaign in Brazil during summer 2014. This paper describes the specMACS instrument hardware and software design and characterizes the instrument performance. During the laboratory characterization of the instrument, the radiometric response as well as the spatial and spectral resolution was assessed. Since the instrument is primarily intended for retrievals of atmospheric quantities by inversion of radiative models using measured radiances, a focus is placed on the determination of its radiometric response. Radiometric characterization was possible for both spectrometers, with an absolute accuracy of 3 % at their respective central wavelength regions. First measurements are presented which demonstrate the wide applicability of the instrument. They show that key demands are met regarding the radiometric and spectral accuracy which is required for the intended remote sensing techniques.


2008 ◽  
Vol 8 (4) ◽  
pp. 13479-13505 ◽  
Author(s):  
N. H. Schade ◽  
A. Macke ◽  
H. Sandmann ◽  
C. Stick

Abstract. The detection of cloudiness is investigated by means of partial and total cloud amount estimations from pyrgeometer radiation measurements and all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2005. An improvement to previous studies on this subject results from the fact that for the first time partial cloud amount (PCA), defined as total cloud amounts without high clouds, calculations from longwave downward radiation (LDR) according to the APCADA-Algorithm (Dürr and Philipona, 2004) are validated against both human observations from the German Weather Service DWD at the nearby airport of Sylt and digital all-sky imaging. Differences between the resulting total cloud amounts (TCA's), defined as total cloud amount for all-cloud situations, derived from the camera images and from human observations are within ±1 octa in 72% and within ±2 octa in 85% of the cases. Compared to human observations PCA measurements according to APCADA underestimate the observed cloud cover in 47% of all cases and the differences are within ±1 octa in 60% and ±2 octa in 74% of all cases. Since high cirrus clouds can not be derived from LDR, separate comparisons for all cases without high clouds have been performed showing an agreement within ±1(2) octa in 73(90)% for PCA and also for camera derived TCA. For this coastal mid-latitude site under investigation we find similar though slightly smaller agreements to human observations as reported in Dürr and Philipona (2004). Though limited to day-time the cloud cover retrievals from the sky imager are not much affected by cirrus clouds and provide a more reliable cloud climatology for all-cloud conditions than APCADA.


1975 ◽  
Vol 2 (8) ◽  
pp. 357-360 ◽  
Author(s):  
Shailendra Kumar ◽  
A. Lyle Broadfoot
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document