Large deflection analysis of moderately thick radially functionally graded annular sector plates fully and partially rested on two-parameter elastic foundations by GDQ method

2014 ◽  
Vol 39 ◽  
pp. 260-271 ◽  
Author(s):  
Farhad Alinaghizadeh ◽  
Mehran Kadkhodayan
2015 ◽  
Vol 07 (06) ◽  
pp. 1550083 ◽  
Author(s):  
Farhad Alinaghizadeh ◽  
Mahmoud Shariati

In this paper, buckling analysis of thick radially functionally graded circular/annular sector plates with variable thickness resting on two-parameter elastic foundations is studied. The material properties vary along radial direction according to either an exponential or a power-law distribution. The stability equations are derived using the adjacent equilibrium criterion and are based on a higher order shear deformation theory. The generalized differential quadrature method is employed to discretize the stability equations and convert them into a system of algebraic eigenvalue problem. The formulation and method of solution are validated by performing comparison studies with the available results in the open literature. Then, the effects of power-law index, boundary conditions, thickness variation and coefficients of foundation on the critical buckling load of the circular/annular sector plates subjected to different types of in-plane compressions or in-plane shear are investigated in detail.


1984 ◽  
Vol 19 (1) ◽  
pp. 1-8 ◽  
Author(s):  
R S Srinivasan ◽  
V Thiruvenkatachari

Thin annular sector plates undergoing large deflections due to lateral loads are considered in this paper. For such plates exact solutions are not available. A matrix method using integral equation of beams and the Newton Raphson procedure has been adopted for the analysis of clamped annular sector plates. Numerical values for the deflection, the membrane and the bending stresses at the interior of the plate, and the bending stresses at the edges of the plate are obtained. A parametric study has been carried out by varying the sector angle from 30 to 90 degrees in steps of 30 degrees, and the ratio of the inner and outer radii from 0 to 0.6 in steps of 0.2. The results are presented in non-dimensional graphical format.


Author(s):  
A Naderi ◽  
A R Saidi

In this study, an analytical solution for the buckling of a functionally graded annular sector plate resting on an elastic foundation is presented. The buckling analysis of the functionally graded annular sector plate is investigated for two typical, Winkler and Pasternak, elastic foundations. The equilibrium and stability equations are derived according to the Kirchhoff's plate theory using the energy method. In order to decouple the highly coupled stability equations, two new functions are introduced. The decoupled equations are solved analytically for a plate having simply supported boundary conditions on two radial edges. Satisfying the boundary conditions on the circular edges of the plate yields an eigenvalue problem for finding the critical buckling load. Extensive results pertaining to critical buckling load are presented and the effects of boundary conditions, volume fraction, annularity, plate thickness, and elastic foundation are studied.


Author(s):  
Kamran Asemi ◽  
Manouchehr Salehi ◽  
Mehdi Akhlaghi

AbstractNatural frequency analysis of anisotropic functionally graded material (FGM) annular sector plates on Winkler elastic foundations based on three-dimensional theory of elasticity was investigated. The three-dimensional graded finite element formulation was derived based on the principle of minimum potential energy and the Rayleigh-Ritz method. For an orthotropic FGM, the material properties were assumed to have in-plane polar orthotropy and transverse heterogeneity according to an exponential law, whereas the mass density was assumed to be constant. For an isotropic FGM, material properties varied continuously through the thickness direction according to a power-law distribution, whereas Poisson’s ratio was set to be constant. The effects of material gradient exponents, different sector angles, different thickness ratio, Winkler parameter and two different boundary conditions on the natural frequencies and mode shapes of FGM annular sector plates have been investigated. Numerical solution was compared with the result of an FGM annular circular plate, which showed good agreement.


Sign in / Sign up

Export Citation Format

Share Document