Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass

2019 ◽  
Vol 153-154 ◽  
pp. 21-35 ◽  
Author(s):  
Ismail Esen
Author(s):  
Davod Roshandel ◽  
Massood Mofid ◽  
Amin Ghannadiasl

In this article, the dynamic response of a non-uniform Timoshenko beam acted upon by a moving mass is extensively investigated. To this end, the eigenfunction expansion method is adapted to the problem, employing the natural mode shapes of a uniform Timoshenko beam. Moreover, the orthonormal polynomial series expansion method is successfully applied to the coupled set of governing differential equations pertaining to the dynamic behavior of non-uniform Timoshenko beam actuated by a moving mass. Some numerical examples are solved in which the excellent agreement of the two presented methods is illustrated.


Author(s):  
S. Eftekhar Azam ◽  
M. Mofid ◽  
R. Afghani Khoraskani

Author(s):  
Vu Minh Anh ◽  
Nguyen Dinh Duc

The nonlinear dynamic response and vibration of the porous functionally graded cylindrical panel (PFGCP) subjected to the thermal load, mechanical load and resting on elastic foundations are determined by an analytical approach as the Reddy’s third-order shear deformation theory, Ahry’s function… The results for dynamic response of PFGCP present the effect of geometrical ratio, elastic foundations: Winkler foundation and Paskternak foundation, loads: mechanical load and thermal load, the material properties and distribution type of porous. The results are shown as numerical results, figures and are determined by using Galerkin methods and Fourth-order Runge-Kutta method.


Author(s):  
Khashayar Teimoori ◽  
Ali M. Sadegh

In the past decade, beams that are made of functionally graded materials (FGM) have been employed in many engineering and biomedical application fields. In this paper, dynamic response of a FGM Timoshenko beam that is supported by an elastic foundation and is subjected to a moving mass, i.e., the effects of boundary flexibility, has been investigated. It is assumed that the material properties of the beam will change only in the thickness direction. The governing equations of motion are derived using Hamilton’s principles. The partial governing differential equations of motion are reduced to a set of ordinary differential equations by using Petrov-Galerkin method. Runge-Kutta numerical scheme is employed to solve the obtained set of ordinary differential equations. After verification of the results for some special cases with known sloutions the effect of various parameters such as the velocity of moving loads, the boundary flexibility, the power-law index on the vibration of the beam have been investigated. The special case of the solution of the problem was compared with the study of Mesut Simsek [2010] and H. P. Lee [1998] which showed excellent agreement. The results have also been compared to the similar beam without FGM and the advantages of FGM have been discussed.


Sign in / Sign up

Export Citation Format

Share Document