Assessment on jet direction effect on drag and heat reduction efficiency for hypersonic vehicles

2020 ◽  
Vol 106 ◽  
pp. 105932
Author(s):  
Liang Zhu ◽  
Xiong Chen ◽  
Xiaotao Tian ◽  
Jun Song ◽  
Hao Li ◽  
...  
2020 ◽  
Vol 59 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Yao Wang ◽  
Jianqing Feng ◽  
Lihua Jin ◽  
Chengshan Li

AbstractWe have grown Cu2O films by different routes including self-oxidation and metal-organic deposition (MOD). The reduction efficiency of Cu2O films on graphene oxide (GO) synthesized by modified Hummer’s method has been studied. Surface morphology and chemical state of as-prepared Cu2O film and GO sheets reduced at different conditions have also been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Results show that self-oxidation Cu2O film is more effective on phtocatalytic reduction of GO than MOD-Cu2O film. Moreover, reduction effect of self-oxidation Cu2O film to GO is comparable to that of environmental-friendly reducing agent of vitamin C. The present results offer a potentially eco-friendly and low-cost approach for the manufacture of reduced graphene oxide (RGO) by photocatalytic reduction.


2021 ◽  
Vol 11 (2) ◽  
pp. 532
Author(s):  
Evgenios Kokkinos ◽  
Aggeliki Banti ◽  
Ioanna Mintsouli ◽  
Aikaterini Touni ◽  
Sotiris Sotiropoulos ◽  
...  

A combination of thermal (500–750 °C in air) and hydrometallurgical (acidic) treatments have been applied to dried tannery sludge, resulting in the initial conversion of Cr(III) to Cr(VI) and its subsequent leaching as wastewater with high Cr(VI) concentration content (3000–6000 mg/L), presenting an extraction efficiency over 90%. The optimal electrochemical conditions for the subsequent Cr(VI) reduction with respect to acid concentration and acid kind were established by applying appropriate rotating disc electrode (RDE) experiments, using a glassy carbon (GC) electrode, and found to be equal or higher than 0.5 M H2SO4 (for the respective Cr(III) concentration range studied). The result from leaching Cr(VI) wastewater was further treated in small electrochemical bench-scale reactor for its conversion back to Cr(III) form, potentially reusable in the tanning industry. Ti-based anodes and a reticulated vitreous carbon (RVC) cathode were used to treat small (350–800 mL) samples in batch, as well as in batch-recirculation prototype electrochemical reactors, under the application of constant current or appropriately applied potential to achieve Cr(VI) conversion/reduction efficiency over 95%.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 787
Author(s):  
Anna Lymperatou ◽  
Niels B. Rasmussen ◽  
Hariklia N. Gavala ◽  
Ioannis V. Skiadas

Swine manure mono-digestion results in relatively low methane productivity due to the low degradation rate of its solid fraction (manure fibers), and due to the high ammonia and water content. The aqueous ammonia soaking (AAS) pretreatment of manure fibers has been proposed for overcoming these limitations. In this study, continuous anaerobic digestion (AD) of manure mixed with optimally AAS-treated manure fibers was compared to the AD of manure mixed with untreated manure fibers. Due to lab-scale pumping restrictions, the ratio of AAS-optimally treated manure fibers to manure was only 1/3 on a total solids (TS) basis. However, the biogas productivity and methane yield were improved by 17% and 38%, respectively, also confirming the predictions from a simplified 1st order hydrolysis model based on batch experiments. Furthermore, an improved reduction efficiency of major organic components was observed for the digester processing AAS-treated manure fibers compared to the non-treated one (e.g., 42% increased reduction for cellulose fraction). A preliminary techno-economic analysis of the proposed process showed that mixing raw manure with AAS manure fibers in large-scale digesters could result in a 72% increase of revenue compared to the AD of manure mixed with untreated fibers and 135% increase compared to that of solely manure.


Sign in / Sign up

Export Citation Format

Share Document