On the effect of the correction of modelled airfoil tonal noise for a spanwise extension

2021 ◽  
pp. 107033
Author(s):  
Clarice du Plessis ◽  
Sybrand Johannes Van der Spuy ◽  
Hanno Carl Rudolf Reuter
Keyword(s):  
Author(s):  
Marzieh Sadeghian ◽  
Saeid Yazdanirad ◽  
Seyed Mahdi Mousavi ◽  
Mohammad Javad Jafari ◽  
Ali Khavanin ◽  
...  

Acoustics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 92-116 ◽  
Author(s):  
Stéphane Moreau

In future Ultra-High By-Pass Ratio turboengines, the turbomachinery noise (fan and turbine stages mainly) is expected to increase significantly. A review of analytical models and numerical methods to yield both tonal and broadband contributions of such noise sources is presented. The former rely on hybrid methods coupling gust response over very thin flat plates of finite chord length, either isolated or in cascade, and acoustic analogies in free-field and in a duct. The latter yields tonal noise with unsteady Reynolds-Averaged Navier–Stokes (u-RANS) simulations, and broadband noise with Large Eddy Simulations (LES). The analytical models are shown to provide good and fast first sound estimates at pre-design stages, and to easily separate the different noise sources. The u-RANS simulations are now able to give accurate estimates of tonal noise of the most complex asymmetric, heterogeneous fan-Outlet Guiding Vane (OGV) configurations. Wall-modeled LES on rescaled stage configurations have now been achieved on all components: a low-pressure compressor stage, a transonic high-pressure turbine stage and a fan-OGV configuration with good overall sound power level predictions for the latter. In this case, hybrid Lattice–Boltzmann/very large-eddy simulations also appear to be an excellent alternative to yield both contributions accurately at once.


2015 ◽  
Vol 357 ◽  
pp. 95-106 ◽  
Author(s):  
Kishokanna Paramasivam ◽  
Srithar Rajoo ◽  
Alessandro Romagnoli

Author(s):  
Manoochehr Darvish ◽  
Bastian Tietjen ◽  
Daniel Beck ◽  
Stefan Frank

The main focus of this work is on the geometrical modifications that can be applied to the fan wheel and the volute tongue of a radial fan to reduce the tonal noise. The experimental measurements are performed by using the in-duct method in accordance with ISO 5136. In addition to the experimental measurements, CFD (Computational Fluid Dynamics) and CAA (Computational Aeroacoustics) simulations are carried out to investigate the effects of different modifications on the noise and performance of the fan. It is shown that by modifying the blade outlet angle, the tonal noise of the fan can be reduced without affecting the performance of the fan. Moreover, it is indicated that increasing the number of blades leads to a significant reduction in the tonal noise and also an improvement in the performance. However, this trend is only valid up to a certain number of blades, and a further increment might reduce the aerodynamic performance of the fan. Besides modifying the impeller geometry, new volute tongues are designed and manufactured. It is demonstrated that the shape of the volute tongue plays an important role in the tonal noise generation of the fan. It is possible to reduce the tonal noise by using stepped tongues which produce phase-shift effects that lead to an effective local cancellation of the noise.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Graham Ashcroft ◽  
Christian Frey ◽  
Kathrin Heitkamp ◽  
Christian Weckmüller

This is the first part of a series of two papers on unsteady computational fluid dynamics (CFD) methods for the numerical simulation of aerodynamic noise generation and propagation. In this part, the stability, accuracy, and efficiency of implicit Runge–Kutta schemes for the temporal integration of the compressible Navier–Stokes equations are investigated in the context of a CFD code for turbomachinery applications. Using two model academic problems, the properties of two explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) schemes of second- and third-order accuracy are quantified and compared with more conventional second-order multistep methods. Finally, to assess the ESDIRK schemes in the context of an industrially relevant configuration, the schemes are applied to predict the tonal noise generation and transmission in a modern high bypass ratio fan stage and comparisons with the corresponding experimental data are provided.


Sign in / Sign up

Export Citation Format

Share Document