Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland

2007 ◽  
Vol 41 (39) ◽  
pp. 9091-9098 ◽  
Author(s):  
R.G. Derwent ◽  
P.G. Simmonds ◽  
A.J. Manning ◽  
T.G. Spain
2020 ◽  
Author(s):  
Yee Jun Tham ◽  
Nina Sarnela ◽  
Carlos A. Cuevas ◽  
Iyer Siddharth ◽  
Lisa Beck ◽  
...  

<p>Atmospheric halogens chemistry like the catalytic reaction of bromine and chlorine radicals with ozone (O<sub>3</sub>) has been known to cause the springtime surface-ozone destruction in the polar region. Although the initial atmospheric reactions of chlorine with ozone are well understood, the final oxidation steps leading to the formation of chlorate (ClO<sub>3</sub><sup>-</sup>) and perchlorate (ClO<sub>4</sub><sup>-</sup>) remain unclear due to the lack of direct evidence of their presence and fate in the atmosphere. In this study, we present the first high-resolution ambient data set of gas-phase HClO<sub>3</sub> (chloric acid) and HClO<sub>4</sub> (perchlorate acid) obtained from the field measurement at the Villum Research Station, Station Nord, in high arctic North Greenland (81°36’ N, 16°40’ W) during the spring of 2015. A state-of-the-art chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF) was used in negative ion mode with nitrate ion as the reagent ion to detect the gas-phase HClO<sub>3</sub> and HClO<sub>4</sub>. We measured significant level of HClO<sub>3</sub> and HClO<sub>4</sub> only during the springtime ozone depletion events in the Greenland, with concentration up to 9x10<sup>5</sup> molecule cm<sup>-3</sup>. Air mass trajectory analysis shows that the air during the ozone depletion event was confined to near-surface, indicating that the O<sub>3</sub> and surface of sea-ice/snowpack may play important roles in the formation of HClO<sub>3</sub> and HClO<sub>4</sub>. We used high-level quantum-chemical methods to calculate the ultraviolet-visible absorption spectra and cross-section of HClO<sub>3</sub> and HClO<sub>4</sub> in the gas-phase to assess their fates in the atmosphere. Overall, our results reveal the presence of HClO<sub>3</sub> and HClO<sub>4</sub> during ozone depletion events, which could affect the chlorine chemistry in the Arctic atmosphere.</p>


2021 ◽  
Author(s):  
Xin Yang ◽  
Anne-M Blechschmidt2 ◽  
Kristof Bognar ◽  
Audra McClure–Begley ◽  
Sara Morris ◽  
...  

<p>Within the framework of the International Arctic Systems for Observing the Atmosphere (IASOA), we report a modelling-based study on surface ozone across the Arctic. We use surface ozone from six sites: Summit (Greenland), Pallas (Finland), Barrow (USA), Alert (Canada), Tiksi (Russia), and Villum Research Station (VRS) at Station Nord (North Greenland, Danish Realm), and ozonesonde data from three Canadian sites: Resolute, Eureka, and Alert. Two global chemistry models: a global chemistry transport model (p-TOMCAT) and a global chemistry climate model (UKCA), are used for model-data comparisons. Remotely sensed data of BrO from the GOME-2 satellite instrument at Eureka, Canada are used for model validation.</p><p>The observed climatology data show that spring surface ozone at coastal Arctic is heavily depleted, making ozone seasonality at Arctic coastal sites distinctly different from that at inland sites. Model simulations show that surface ozone can be greatly reduced by bromine chemistry. In April, bromine chemistry can cause a net ozone loss (monthly mean) of 10-20 ppbv, with almost half attributable to open-ocean-sourced bromine and the rest to sea-ice-sourced bromine. However, the open-ocean-sourced bromine, via sea spray bromide depletion, cannot by itself produce ozone depletion events (ODEs) (defined as ozone volume mixing ratios VMRs < 10 ppbv). In contrast, sea-ice-sourced bromine, via sea salt aerosol (SSA) production from blowing snow, can produce ODEs even without bromine from sea spray, highlighting the importance of sea ice surface in polar boundary layer chemistry.</p><p>Modelled total inorganic bromine (Br<sub>Y</sub>) over the Arctic sea ice  is sensitive to model configuration, e.g., under the same bromine loading, Br<sub>Y</sub> in the Arctic spring boundary layer in the p-TOMCAT control run (i.e., with all bromine emissions) can be 2 times that in the UKCA control run. Despite the model differences, both model control runs can successfully reproduce large bromine explosion events (BEEs) and ODEs in polar spring. Model-integrated tropospheric column BrO generally matches GOME-2 tropospheric columns within ~50% in UKCA and a factor of 2 in p-TOMCAT. The success of the models in reproducing both ODEs and BEEs in the Arctic indicates that the relevant parameterizations implemented in the models work reasonably well, which supports the proposed mechanism of SSA production and bromide release on sea ice. Given that sea ice is a large source of SSA and halogens, changes in sea ice type and extent in a warming climate will influence Arctic boundary layer chemistry, including the oxidation of atmospheric elemental mercury. Note that this work dose not necessary rule out other possibilities that may act as a source of reactive bromine from sea ice zone.</p>


2009 ◽  
Vol 30 (15-16) ◽  
pp. 4019-4032 ◽  
Author(s):  
G. Kopp ◽  
S. M. Calderón ◽  
J. Gross ◽  
G. Hochschild ◽  
P. Hoffmann ◽  
...  

2015 ◽  
Vol 15 (12) ◽  
pp. 16747-16774
Author(s):  
J. Han ◽  
B. Shin ◽  
M. Lee ◽  
G. Hwang ◽  
J. Kim ◽  
...  

Abstract. Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The average ozone concentrations were 51.8 ± 15.9 ppbv during June 2003–December 2010. The seasonal variation of ozone was distinct, with a summer minimum (37.8 ppbv) and a spring maximum (61.1 ppbv), and was largely affected by seasonal wind pattern over East Asia. The fractional contribution of ozone at IORS could be attributed to six well distinguished air masses that were classified by the cluster analysis of backward trajectories. Marine air from the Pacific Ocean represents a relatively clean background air with a lowest ozone level of 32.2 ppbv in summer. In spring and winter the influence of Chinese outflows was dominant with higher ozone concentrations of 61.6 and 49.3 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS, of which extent was apt to be changed by meteorological state, particularly at a long-term scale.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Philip McVeigh ◽  
Colin O'Dowd ◽  
Harald Berresheim

Measurements of ozone fluxes using the eddy-correlation (EC) technique were carried out for the first time at the Mace Head atmospheric research station, on the west coast of Ireland between August-October 2009. Vertical exchange of ozone was measured from a tower platform at 22 m above mean sea level to study fluxes over coastal waters excluding the tidal region. The results were averaged over 30 min and exhibited predominantly downward but also upward transport of ozone in the boundary layer. Data quality was found to be high based on inspection of cospectra and micrometeorological measurements. During the study period, a major physical influence onO3fluxes was found to be wind speed. Measured fluxes were of the same magnitude as reported in previous open ocean studies ranging from approximately+0.2to−0.5 μgm−2 s−1(−0.017 μgm−2 s−1on average, corresponding to a deposition velocity of 0.25 mms−1or a surface resistance of 4.13 smm−1). These results are considered to represent ozone fluxes over shallow coastal waters west of Ireland for conditions during summer and fall not affected by phytoplankton blooms.


2020 ◽  
Author(s):  
Xin Yang ◽  
Anne-M Blechschmidt ◽  
Kristof Bognar ◽  
Audra McClure–Begley ◽  
Sara Morris ◽  
...  

Abstract. Within the framework of the International Arctic Systems for Observing the Atmosphere (IASOA), we report a modelling-based study on surface ozone across the Arctic. We use surface ozone from six sites: Summit (Greenland), Pallas (Finland), Barrow (USA), Alert (Canada), Tiksi (Russia), and Villum Research Station (VRS) at Station Nord (North Greenland, Danish Realm), and ozonesonde data from three Canadian sites: Resolute, Eureka, and Alert. Two global chemistry models: a global chemistry transport model (p-TOMCAT) and a global chemistry climate model (UKCA), are used for model-data comparisons. Remotely sensed data of BrO from the GOME-2 satellite instrument and ground-based Multi-axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Eureka, Canada are used for model validation. The observed climatology data show that spring surface ozone at coastal sites is heavily depleted, making ozone seasonality at Arctic coastal sites distinctly different from that at inland sites. Model simulations show that surface ozone can be greatly reduced by bromine chemistry. In April, bromine chemistry can cause a net ozone loss (monthly mean) of 10–20 ppbv, with almost half attributable to open-ocean-sourced bromine and the rest to sea-ice-sourced bromine. However, the open-ocean-sourced bromine, via sea spray bromide depletion, cannot by itself produce ozone depletion events (ODEs) (defined as ozone volume mixing ratios VMRs 


2019 ◽  
Vol 203 ◽  
pp. 28-34 ◽  
Author(s):  
Richard G. Derwent ◽  
Peter G. Simmonds ◽  
Simon J. O'Doherty ◽  
Alistair J. Manning ◽  
T. Gerard Spain

Author(s):  
R. G. Derwent ◽  
Peter Simmonds ◽  
Simon O'Doherty ◽  
Gerard Spain ◽  
Dickon Young

The peat bogs of Connemara in the vicinity of the Mace Head Atmospheric Research Station on the Atlantic Ocean coastline of Ireland act as natural sources and sinks of greenhouse...


2015 ◽  
Vol 15 (21) ◽  
pp. 12611-12621 ◽  
Author(s):  
J. Han ◽  
B. Shin ◽  
M. Lee ◽  
G. Hwang ◽  
J. Kim ◽  
...  

Abstract. Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July–August). In spring (March–April) and winter (December–February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.


2020 ◽  
Vol 233 ◽  
pp. 117531
Author(s):  
RichardG. Derwent ◽  
DavidD. Parrish ◽  
Peter G. Simmonds ◽  
Simon J. O'Doherty ◽  
T. Gerard Spain

Sign in / Sign up

Export Citation Format

Share Document