State of mixture of atmospheric submicrometer black carbon particles and its effect on particulate light absorption

2009 ◽  
Vol 43 (6) ◽  
pp. 1296-1301 ◽  
Author(s):  
Hiroaki Naoe ◽  
Shuichi Hasegawa ◽  
Jost Heintzenberg ◽  
Kikuo Okada ◽  
Akihiro Uchiyama ◽  
...  
2020 ◽  
Vol 262 ◽  
pp. 114172 ◽  
Author(s):  
Cheng Yuan ◽  
Jun Zheng ◽  
Yan Ma ◽  
Youling Jiang ◽  
Yilin Li ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 516
Author(s):  
María Piñeiro-Iglesias ◽  
Javier Andrade-Garda ◽  
Sonia Suárez-Garaboa ◽  
Soledad Muniategui-Lorenzo ◽  
Purificación López-Mahía ◽  
...  

Light-absorbing carbonaceous aerosols (including black carbon (BC)) pose serious health issues and play significant roles in atmospheric radiative properties. Two-year measurements (2015–2016) of aerosol light absorption, combined with measurements of sub-micrometric particles, were continuously conducted in A Coruña (northwest (NW) Spain) to determine their light absorption properties: absorption coefficients (σabs) and the absorption Ångström exponent (AAE). The mean and standard deviation of equivalent black carbon (eBC) during the period of study were 0.85 ± 0.83 µg m−3, which are lower than other values measured in urban areas of Spain and Europe. High eBC concentrations found in winter are associated with an increase in emissions from anthropogenic sources in combination with lower mixing layer heights and frequent stagnant conditions. The pronounced diurnal variability suggests a strong influence from local sources. AAE had an average value of 1.26 ± 0.22 which implies that both fossil fuel combustion and biomass burning influenced optical aerosol properties. This also highlights biomass combustion in suburban areas, where the use of wood for domestic heating is encouraged, as an important source of eBC. All data treatment was gathered using SCALA© as atmospheric aerosol data management support software program.


2021 ◽  
Vol 253 ◽  
pp. 118358
Author(s):  
Xue Feng ◽  
Jiandong Wang ◽  
Shiwen Teng ◽  
Xiaofeng Xu ◽  
Bin Zhu ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Xin Wang ◽  
Xueying Zhang ◽  
Wenjing Di

Abstract. An improved two-sphere integration (TSI) technique has been developed to quantify black carbon (BC) concentrations in the atmosphere and seasonal snow. The major advantage of this system is that it combines two distinct integrated spheres to reduce the scattering effect due to light-absorbing particles and thus provides accurate determinations of total light absorption from BC collected on Nuclepore filters. The TSI technique can be calibrated using a series of 15 filter samples of standard fullerene soot. This technique quantifies the mass of BC by separating the spectrally resolved total light absorption into BC and non-BC fractions. To assess the accuracy of the improved system, an empirical procedure for measuring BC concentrations with a two-step thermal–optical method is also applied. Laboratory results indicate that the BC concentrations determined using the TSI technique and theoretical calculations are well correlated (R2=0.99), whereas the thermal–optical method underestimates BC concentrations by 35 %–45 % compared to that measured by the TSI technique. Assessments of the two methods for atmospheric and snow samples revealed excellent agreement, with least-squares regression lines with slopes of 1.72 (r2=0.67) and 0.84 (r2=0.93), respectively. However, the TSI technique is more accurate in quantifications of BC concentrations in both the atmosphere and seasonal snow, with an overall lower uncertainty. Using the improved TSI technique, we find that light absorption at a wavelength of 550 nm due to BC plays a dominant role relative to non-BC light absorption in both the atmosphere (62.76 %–91.84 % of total light absorption) and seasonal snow (43.11 %–88.56 %) over northern China.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2615 ◽  
Author(s):  
Jeonghoon Lee ◽  
Hans Moosmüller

In this study, a photothermal interferometer was developed, based on a folded-Jamin polarization instrument with refractive-index sensitive configuration, in order to characterize light-absorbing aerosols. The feasibility of our interferometric technique was demonstrated by performing photothermal spectroscopy characterizing spark-generated black carbon particles with atmospherically relevant concentrations and atmospheric aerosols in a metropolitan area. The sensitivity of this interferometric system for both laboratory-generated aerosols and atmospheric aerosols was ~ 1 (μg/m3)/μV, which is sufficient for the monitoring of black carbon aerosol in urban areas.


Sign in / Sign up

Export Citation Format

Share Document