Diagnostic analysis of ozone concentrations simulated by two regional-scale air quality models

2011 ◽  
Vol 45 (33) ◽  
pp. 5957-5969 ◽  
Author(s):  
Jerold A. Herwehe ◽  
Tanya L. Otte ◽  
Rohit Mathur ◽  
S. Trivikrama Rao
Author(s):  
Alice B. Gilliland ◽  
James M. Godowitch ◽  
Christian Hogrefe ◽  
S. T. Rao

Author(s):  
Daiwen Kang ◽  
Brian K. Eder ◽  
Kenneth L. Schere

2021 ◽  
Author(s):  
Stefano Galmarini ◽  
Paul Makar ◽  
Olivia Clifton ◽  
Christian Hogrefe ◽  
Jesse Bash ◽  
...  

Abstract. We present in this technical note the research protocol for Phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This research initiative is divided in two activities, collectively having three goals: (i) to define the current state of the science with respect to representations of wet and especially dry deposition in regional models, (ii) to quantify the extent to which different dry deposition parameterizations influence retrospective air pollutant concentration and flux predictions, and (iii) to identify, through the use of a common set of detailed diagnostics, sensitivity simulations, model evaluation, and reducing input uncertainty, the specific causes for the current range of these predictions. Activity 1 is dedicated to the diagnostic evaluation of wet and dry deposition processes in regional air quality models (described in this paper), and Activity 2 to the evaluation of dry deposition point models against ozone flux measurements at multiple towers with multiyear observations (Part 2). The scope of these papers is to present the scientific protocols for AQMEII4, as well to summarize the technical information associated with the different dry deposition approaches used by the participating research groups of AQMEII4. In addition to describing all common aspects and data used for this multi-model evaluation activity, most importantly, we present the strategy devised to allow a common process-level comparison of dry deposition obtained from models using sometimes very different dry deposition schemes. The strategy is based on adding detailed diagnostics to the algorithms used in the dry deposition modules of existing regional air quality models, in particular archiving land use/land cover (LULC)-specific diagnostics and creating standardized LULC categories to facilitate cross-comparison of LULC-specific dry deposition parameters and processes, as well as archiving effective conductance and effective flux as means for comparing the relative influence of different pathways towards the net or total dry deposition. This new approach, along with an analysis of precipitation and wet deposition fields, will provide an unprecedented process-oriented comparison of deposition in regional air-quality models. Examples of how specific dry deposition schemes used in participating models have been reduced to the common set of comparable diagnostics defined for AQMEII4 are also presented.


2019 ◽  
Author(s):  
S. Trivikrama Rao ◽  
Huiying Luo ◽  
Marina Astitha ◽  
Christian Hogrefe ◽  
Valerie Garcia ◽  
...  

Abstract. Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and regulatory purposes. It is well known that there are both reducible and irreducible uncertainties in the meteorology-atmospheric chemistry modeling systems. Inherent or irreducible uncertainties stem from our inability to properly characterize stochastic variations in atmospheric dynamics and from the incommensurability associated with comparisons of the volume-averaged model estimates with point measurements. Because stochastic variations in atmospheric dynamics and emissions forcing influencing the air pollutant concentrations are difficult to explicitly simulate, one can expect to find a percentile value from the distribution of measured concentrations to have much greater variability than that of the model. This paper presents an observation-based methodology to determine the expected errors from regional air quality models even when the model design, physics, chemistry, and numerical analysis techniques as well as its input data were perfect. To this end, the short-term synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone time series are separated from the longer-term forcings using a simple recursive moving average filter. The inherent variability attributable to the stochastic nature of the atmosphere is determined based on 30+ years of historical ozone time series data measured at various monitoring sites in the contiguous United States. The results reveal that the expected root mean square error at the median and 95th percentile is about 2 ppb and 5 ppb, respectively, even for perfect air quality models driven with perfect input data. Quantitative estimation of the limit to the model's accuracy will help in objectively assessing the current state-of-the-science in regional air pollution models, measuring progress in their evolution, and providing meaningful and firm targets for improvements in their accuracy relative to ambient measurements.


2008 ◽  
Vol 42 (21) ◽  
pp. 5403-5412 ◽  
Author(s):  
John S. Irwin ◽  
Kevin Civerolo ◽  
Christian Hogrefe ◽  
Wyat Appel ◽  
Kristen Foley ◽  
...  

2009 ◽  
Vol 12 (2) ◽  
pp. 111-120
Author(s):  
Nghiem Hoang Le ◽  
Oanh Thi Kim Nguyen

Long range transport of ozone and its precursors can significantly impact the air quality in downwind regions. The problem of regional transport of ozone has been studied for more than three decades in Europe and U.S but not yet in Southeast Asia. This study investigated the regional scale distribution of tropospheric ozone over the Continental South East Asia Region (CSEA) of Thailand, Burma, Cambodia, Lao and Vietnam. The Models-3 Community Multi-scale Air Quality (CMAQ modeling system, driven by the NCAR/Penn State Fifth-Generation Mesoscale Model (MM5), is used for the purpose. The model domain covers the longitude range from 91'E to 111°E and the latitude range from 5°N to 25°N. Two most recent ozone episodes of March 24-26, 2004 and January 2-4, 2005 were selected which represent the typical meteorological conditions for high ozone concentrations periods of a year. The episode analysis was made based on available data from 10 and 4 monitoring stations located in Bangkok of Thailand and Ho Chi Minh City (HCMC) of Vietnam, respectively. The episodes were characterized with hourly ozone levels above the National Ambient Air Quality Standards of Thailand and Vietnam of 100 ppb at a number of the monitoring stations. The maximum ground level concentrations of ozone for March 2004 and January 2005 episodes reached 173 ppb and 157 ppb, respectively, in the urban plume of the Bangkok Metropolitan Region (BMR). The simulations were performed with 0.5o 0.5° emission input data which was prepared from the regional anthropogenic emission inventory used in the Transport and Chemical Evolution over the Pacific (TRACE-P), and the biogenic emissions obtained from the Global Emissions Inventory Activity (GEIA). The simulated overall picture of ground level ozone concentrations over CSEA domain shows that the concentrations were high at the downwind areas at a considerable distance from large urban areas such as BMR and HCMC. During March 2004 episode the ozone plume moved northeastward following the Southwesterly monsoon and the maximum width of the modeled plume with the ozone above 100 ppb was about 70 km from BMR. For HCMC the ozone plume moved northward and the concentration in the city plume was lower with the width of isopleth of 50ppb of around 40 km. During the Jan 2005 episode the ozone plume moved southwestward following the Northeasterly monsoon and the width of the modeled plume with the ozone concentration above 100 ppb in BMR was 50 km while for HCMC the width of the 40ppb isopleth was about 30 km. The model performance was evaluated on the available observed hourly ozone concentrations. The model system was shown to be able to reproduce the peak ozone levels that occurred during the episodes at these two large urban areas, and capture the day by day variations during the selected episodes. The performance statistics MNBE, NGE, and UPA for the simulated ozone concentrations are within U.S. EPA guidance criteria and are comparable to those reported previous for other regional ozone simulations. It is shown that the MM5/CMAQ system is the suitable modeling tools for ozone prediction over the CSEA.


2018 ◽  
Author(s):  
Noelia Otero ◽  
Jana Sillmann ◽  
Kathleen A. Mar ◽  
Henning W. Rust ◽  
Sverre Solberg ◽  
...  

Abstract. The implementation of European emission abatement strategies has led to significant reduction in the emission of ozone precursors during the last decade. Ground level ozone is also influenced by meteorological factors such as temperature, which exhibit interannual variability, and are expected to change in the future. The impacts of climate change on air quality are usually investigated through air quality models that simulate interactions between emissions, meteorology and chemistry. Within a multi-model assessment, this study aims to better understand how air quality models represent the relationship between meteorological variables and surface ozone concentrations over Europe. A multiple linear regression (MLR) approach is applied to observed and modelled time series across ten European regions in springtime and summertime for the period of 2000–2010 for both models and observations. Overall, the air quality models are in better agreement with observations in summertime than in springtime, and particularly in certain regions, such as France, Mid-Europe or East-Europe, where local meteorological variables show a strong influence on surface ozone concentrations. Larger discrepancies are found for the southern regions, such as the Balkans, the Iberian Peninsula and the Mediterranean basin, especially in springtime. We show that the air quality models do not properly reproduce the sensitivity of surface ozone to some of the main meteorological drivers, such as maximum temperature, relative humidity and surface solar radiation. Specifically, all air quality models show more limitations to capture the strength of the relationship ozone-relative humidity detected in the observed time series in most of the regions, in both seasons. Here, we speculate that dry deposition schemes in the air quality models might play an essential role to capture this relationship. We further quantify the relationship between ozone and maximum temperature (mo3-T, climate penalty) in observations and air quality models. In summertime, most of the air quality models are able to reproduce reasonably well the observed climate penalty in certain regions such as France, Mid-Europe and North Italy. However, larger discrepancies are found in springtime, where air quality models tend to overestimate the magnitude of observed climate penalty.


Sign in / Sign up

Export Citation Format

Share Document