scholarly journals Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea

2016 ◽  
Vol 131 ◽  
pp. 360-370 ◽  
Author(s):  
Chunjie Wang ◽  
Zhijia Ci ◽  
Zhangwei Wang ◽  
Xiaoshan Zhang ◽  
Jia Guo
2009 ◽  
Vol 9 (3) ◽  
pp. 13655-13691 ◽  
Author(s):  
H. Geng ◽  
Y.-M. Park ◽  
H.-J. Hwang ◽  
S. Kang ◽  
C.-U. Ro

Abstract. Low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) shows powerful advantages for the characterization of ambient particulate matter in environmental and geological applications. By the application of the low-Z particle EPMA single particle analysis, an overall examination of 1800 coarse and fine particles (aerodynamic diameters: 2.5–10 μm and 1.0–2.5 μm, respectively) in six samples collected on 28 April–1 May 2006 in the marine boundary layer (MBL) of the Bohai Sea and Yellow Sea was conducted. Three samples (D1, D2, and D3) were collected along the Bohai Bay, Bohai Straits, and Yellow Sea near Korea during an Asian dust storm event while the other three samples (N3, N2, and N1) were collected on normal days. Based on X-ray spectral and secondary electron image data, 15 different types of particles were identified, in which soil-derived particles were encountered with the largest frequency, followed by (C, N, O)-rich droplets (likely the mixture of organic matter and NH4NO3), particles of marine origin, and carbonaceous, Fe-rich, fly ash, and (C, N, O, S)-rich droplet particles. Results show that during the Asian dust storm event relative abundances of the (C, N, O)-rich droplets and the nitrate-containing secondary soil-derived particles were markedly increased (on average by a factor of 4.5 and 2, respectively in coarse fraction and by a factor of 1.9 and 1.5, respectively in fine fraction) in the MBL of the Bohai Sea and Yellow Sea, implying that Asian dust aerosols in springtime are an important carrier of gaseous inorganic nitrogen species, especially NOx (or HNO3) and NH3.


2009 ◽  
Vol 9 (18) ◽  
pp. 6933-6947 ◽  
Author(s):  
H. Geng ◽  
Y. Park ◽  
H. Hwang ◽  
S. Kang ◽  
C.-U. Ro

Abstract. Low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) shows powerful advantages for the characterization of ambient particulate matter in environmental and geological applications. By the application of the low-Z particle EPMA single particle analysis, an overall examination of 1800 coarse and fine particles (aerodynamic diameters: 2.5–10 μm and 1.0–2.5 μm, respectively) in six samples collected on 28 April–1 May 2006 in the marine boundary layer (MBL) of the Bohai Sea and Yellow Sea was conducted. Three samples (D1, D2, and D3) were collected along the Bohai Bay, Bohai Straits, and Yellow Sea near Korea during an Asian dust storm event while the other three samples (N3, N2, and N1) were collected on non-Asian dust (NAD) days. Based on X-ray spectral and secondary electron image data, 15 different types of particles were identified, in which soil-derived particles were encountered with the largest frequency, followed by (C, N, O)-rich droplets (likely the mixture of organic matter and NH4NO3), particles of marine origin, and carbonaceous, Fe-rich, fly ash, and (C, N, O, S)-rich droplet particles. Results show that during the Asian dust storm event relative abundances of the (C, N, O)-rich droplets and the nitrate-containing secondary soil-derived particles were markedly increased (on average by a factor of 4.5 and 2, respectively in PM2.5−10 fraction and by a factor of 1.9 and 1.5, respectively in PM1.0−2.5 fraction) in the MBL of the Bohai Sea and Yellow Sea, implying that Asian dust aerosols in springtime are an important carrier of gaseous inorganic nitrogen species, especially NOx (or HNO3) and NH3.


2019 ◽  
Vol 16 (22) ◽  
pp. 4485-4496 ◽  
Author(s):  
Ye Tian ◽  
Chao Xue ◽  
Chun-Ying Liu ◽  
Gui-Peng Yang ◽  
Pei-Feng Li ◽  
...  

Abstract. Nitric oxide (NO) is a short-lived compound of the marine nitrogen cycle; however, our knowledge about its oceanic distribution and turnover is rudimentary. Here we present the measurements of dissolved NO in the surface and bottom layers at 75 stations in the Bohai Sea (BS) and the Yellow Sea (YS) in June 2011. Moreover, NO photoproduction rates were determined at 27 stations in both seas. The NO concentrations in the surface and bottom layers were highly variable and ranged from below the limit of detection (i.e., 32 pmol L−1) to 616 pmol L−1 in the surface layer and 482 pmol L−1 in the bottom layer. There was no significant difference (p>0.05) between the mean NO concentrations in the surface (186±108 pmol L−1) and bottom (174±123 pmol L−1) layers. A decreasing trend of NO in bottom-layer concentrations with salinity indicates a NO input by submarine groundwater discharge. NO in the surface layer was supersaturated at all stations during both day and night and therefore the BS and YS were a persistent source of NO to the atmosphere at the time of our measurements. The average flux was about 4.5×10-16 mol cm−2 s−1 and the flux showed significant positive relationship with the wind speed. The accumulation of NO during daytime was a result of photochemical production, and photoproduction rates were correlated to illuminance. The persistent nighttime NO supersaturation pointed to an unidentified NO dark production. NO sea-to-air flux densities were much lower than the NO photoproduction rates. Therefore, we conclude that the bulk of the NO produced in the mixed layer was rapidly consumed before its release to the atmosphere.


2019 ◽  
Vol 58 (4) ◽  
pp. 903-917 ◽  
Author(s):  
Manman Ma ◽  
Yu Zhen ◽  
Tiezhu Mi

AbstractStudies of the community structures of bacteria in marine aerosols of different particle sizes have not been reported. Aerosol samples were collected using a six-stage bioaerosol sampler over the Bohai Sea, the Yellow Sea, and northwestern Pacific Ocean in the spring of 2014. The diversity and composition of these samples were investigated by Illumina high-throughput sequencing, and 130 genera were detected in all of the samples; the most abundant bacterial genus was Bacteroides, followed by Prevotella and Megamonas. The Chao1 and Shannon diversity indices ranged from 193 to 1044 and from 5.44 to 8.33, respectively. The bacterial community structure in coarse particles (diameter larger than 2.1 μm) was more complex and diverse than that in fine particles (diameter less than 2.1 μm) in marine bioaerosols from over the Yellow Sea and northwestern Pacific Ocean, while the opposite trend was observed for samples collected over the Bohai Sea. Although we were sampling over marine regions, the sources of the bioaerosols were mostly continental. Temperature and wind speed significantly influenced the bacterial communities in marine aerosols of different particle sizes. There may be a bacterial background in the atmosphere in the form of several dominant taxa, and the bacterial communities are likely mixed constantly during transmission.


2016 ◽  
Author(s):  
Jun Liu ◽  
Lex Bouwman ◽  
Jiaye Zang ◽  
Chenying Zhao ◽  
Xiaochen Liu ◽  
...  

Abstract. Silicon (Si) and carbon (C) play key roles in the river and marine biogeochemistry. The Si and C budgets for the Bohai Sea were established on the basis of measurements at a range of stations and additional data from the literature. The results show that the spatial distributions of reactive Si and organic C (OC) in the water column are largely affected by the riverine input, primary production and export to the Yellow Sea. Biogenic silica (BSi) and total OC in sediments are mainly from marine primary production. The major supply of dissolved silicate (DSi) comes from benthic diffusion, riverine input alone accounts for 17 % of reactive Si inputs to the Bohai Sea; the dominant DSi removal from the water column is diatom uptake, followed by sedimentation. Rivers contribute 47 % of exogenous OC inputs to the Bohai Sea; the dominant outputs of OC are sedimentation and export to the Yellow Sea. The net burial of BSi and OC represent 3.3 % and 1.0 % of total primary production, respectively. Primary production has increased by 10 % since 2002 as a result of increased river loads of DSi and BSi. Our findings underline the critical role of riverine Si supply in primary production in coastal marine ecosystems.


2022 ◽  
Vol 294 ◽  
pp. 118640
Author(s):  
Mingyu Zhang ◽  
Yan Lin ◽  
Andy M. Booth ◽  
Xikun Song ◽  
Yaozong Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document