Regional air quality impact of northern South America biomass burning emissions

2019 ◽  
Vol 203 ◽  
pp. 131-140 ◽  
Author(s):  
J.F. Mendez-Espinosa ◽  
L.C. Belalcazar ◽  
R. Morales Betancourt
2020 ◽  
Vol 20 (12) ◽  
pp. 7459-7472 ◽  
Author(s):  
Juan Manuel Rincón-Riveros ◽  
Maria Alejandra Rincón-Caro ◽  
Amy P. Sullivan ◽  
Juan Felipe Mendez-Espinosa ◽  
Luis Carlos Belalcazar ◽  
...  

Abstract. Light-absorbing aerosols emitted during open biomass burning (BB) events such as wildfires and agricultural burns have a strong impact on the Earth's radiation budget through both direct and indirect effects. Additionally, BB aerosols and gas-phase emissions can substantially reduce air quality at local, regional, and global scales, negatively affecting human health. South America is one of largest contributors to BB emissions globally. After Amazonia, the BB emissions from wildfires and agricultural burns in the grassland plains of northern South America (NSA) are the most significant in the region. However, few studies have analyzed the potential impact of NSA BB emissions on regional air quality. Recent evidence suggests that seasonal variations in air quality in several major cities in NSA could be associated with open biomass burning emissions, but it is still uncertain to what extent those sources impact air quality in the region. In this work, we report on 3 years of continuous equivalent black carbon (eBC) and brown carbon (BrC) observations at a hilltop site located upwind of the city of Bogotá, and we demonstrate its association with fires detected by the MODerate-resolution Imaging Spectroradiometer (MODIS) in a 3000 km × 2000 km domain. Offline PM2.5 filter samples collected during three field campaigns were analyzed to quantify water-soluble organic carbon (WSOC), organic and elemental carbon (OC∕EC), and biomass burning tracers such as levoglucosan, galactosan, and potassium. MODIS active fire data and HYSPLIT back trajectories were used to identify potential biomass burning plumes transported to the city. We analyzed the relationship between BrC, WSOC, water-soluble potassium, and levoglucosan to identify signals of the regional transport of BB aerosols. Our results confirm that regional biomass burning transport from wildfires occurs annually during the months of January and April. The seasonality of eBC closely followed that of PM2.5 at the city air quality stations; however, the observed seasonality of BrC is distinctly different to that of eBC and strongly associated with regional fire counts. The strong correlation between BrC and regional fire counts was observed at daily, weekly, and monthly timescales. WSOC at the measurement site was observed to increase linearly with levoglucosan during high BB periods and to remain constant at ∼2.5 µgC m−3 during the low BB seasons. Our findings show, for the first time in this region, that aged BB plumes can regularly reach densely populated areas in the Central Andes of northern South America. A source footprint analysis involving BrC observations, back trajectories, and remotely sensed fire activity shows that the eastern savannas in NSA are the main BB source region for the domain analyzed.


2020 ◽  
Author(s):  
Juan Manuel Rincón-Riveros ◽  
Maria Alejandra Rincón-Caro ◽  
Amy P. Sullivan ◽  
Juan Felipe Mendez-Espinosa ◽  
Luis Carlos Belalcazar ◽  
...  

Abstract. Light-absorbing aerosols emitted during open biomass burning (BB) events such as wildfires and agricultural burns have a strong impact on the Earth’s radiation budget through both direct and indirect effects. Additionally, BB aerosols and gas-phase emissions can substantially reduce air quality at local, regional, and global scales, negatively affecting human health. South America is one of largest contributors to BB emissions globally. After Amazonia, the BB emissions from the wildfires and agricultural burns in the grassland plains of Northern South America (NSA) are the most significant in the region. However, few studies have analyzed the potential impact of NSA BB emissions on regional air quality. Recent evidence suggests that seasonal variations in air quality in several major cities in NSA could be associated with open biomass burning emissions, but it is still uncertain to what those sources impact air quality in the region. In this work, we report on 3 years of continuous equivalent Black Carbon (eBC) and Brown Carbon (BrC) observations at a hill-top site located upwind of the city of Bogotá and we demonstrate its association with MODIS detected fires in a 3000 km × 2000 km domain. Off-line PM2.5 filter samples collected during three field campaigns were analyzed to quantify water-soluble organic carbon (WSOC), organic and elemental carbon (OC/EC), and biomass burning tracers such as levoglucosan, galactosan, and potassium. MODIS Active Fire Data and HYSPLIT back-trajectories were used to identify potential biomass burning plumes transported to the city. We analyzed the relationship between BrC, WSOC, water-soluble potassium, and levoglucosan to identify signals of regional transport of BB aerosols. Our results confirm that regional biomass burning transport from wildfires occurs annually during the months of January and April. The seasonality of eBC followed closely that of PM2.5 at the city air quality stations, however, the observed seasonality of BrC is distinctly different to that of eBC and strongly associated to regional fire counts. The strong correlation between BrC and regional fire counts was observed both at daily, weekly, and monthly time-scales. WSOC at the measurement site was observed to increase linearly with levoglucosan during high BB periods, and to remain constant at ∼ 2.5 µgC m−3 during the low BB activity seasons. Our findings show, for the first time in this region, that aged BB plumes can regularly reach densely populated areas in the Central Andes of Northern South America. A source footprint analysis involving BrC observations, back-trajectories, and remotely sensed fire activity shows that the eastern savannas in NSA are the main BB source region for the domain analyzed.


2020 ◽  
Vol 749 ◽  
pp. 141621 ◽  
Author(s):  
Juan F. Mendez-Espinosa ◽  
Nestor Y. Rojas ◽  
Jorge Vargas ◽  
Jorge E. Pachón ◽  
Luis C. Belalcazar ◽  
...  

2018 ◽  
Vol 18 (7) ◽  
pp. 1734-1745 ◽  
Author(s):  
Leila Droprinchinski Martins ◽  
Ricardo Hallak ◽  
Rafaela Cruz Alves ◽  
Daniela S. de Almeida ◽  
Rafaela Squizzato ◽  
...  

2019 ◽  
Vol 19 (9) ◽  
pp. 5771-5790 ◽  
Author(s):  
Eoghan Darbyshire ◽  
William T. Morgan ◽  
James D. Allan ◽  
Dantong Liu ◽  
Michael J. Flynn ◽  
...  

Abstract. We examine processes driving the vertical distribution of biomass burning pollution following an integrated analysis of over 200 pollutant and meteorological profiles measured in situ during the South AMerican Biomass Burning Analysis (SAMBBA) field experiment. This study will aid future work examining the impact of biomass burning on weather, climate and air quality. During the dry season there were significant contrasts in the composition and vertical distribution of haze between western and eastern regions of tropical South America. Owing to an active or residual convective mixing layer, the aerosol abundance was similar from the surface to ∼1.5 km in the west and ∼3 km in the east. Black carbon mass loadings were double as much in the east (1.7 µg m−3) than the west (0.85 µg m−3), but aerosol scattering coefficients at 550 nm were similar (∼120 Mm−1), as too were CO near-surface concentrations (310–340 ppb). We attribute these contrasts to the more flaming combustion of Cerrado fires in the east and more smouldering combustion of deforestation and pasture fires in the west. Horizontal wind shear was important in inhibiting mixed layer growth and plume rise, in addition to advecting pollutants from the Cerrado regions into the remote tropical forest of central Amazonia. Thin layers above the mixing layer indicate the roles of both plume injection and shallow moist convection in delivering pollution to the lower free troposphere. However, detrainment of large smoke plumes into the upper free troposphere was very infrequently observed. Our results reiterate that thermodynamics control the pollutant vertical distribution and thus point to the need for correct model representation so that the spatial distribution and vertical structure of biomass burning smoke is captured. We observed an increase of aerosol abundance relative to CO with altitude both in the background haze and plume enhancement ratios. It is unlikely associated with thermodynamic partitioning, aerosol deposition or local non-fire sources. We speculate it may be linked to long-range transport from West Africa or fire combustion efficiency coupled to plume injection height. Further enquiry is required to explain the phenomenon and explore impacts on regional climate and air quality.


2015 ◽  
Vol 15 (1) ◽  
pp. 363-373 ◽  
Author(s):  
B. Aouizerats ◽  
G. R. van der Werf ◽  
R. Balasubramanian ◽  
R. Betha

Abstract. Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m−3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration slightly increased. However, the absolute concentrations of SOA (up to 20 μg m−3) were much lower than those from POA, indicating a minor role of SOA in these biomass burning plumes. Our results show that about 21% of the total mass loading of ambient PM10 during the July–October study period in Singapore was due to biomass and peat burning in Sumatra, but this contribution increased during high burning periods. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m−3 day−1 indicating poor air quality. During 17 days this was due to fires, based on the difference between the simulations with and without fires. Local pollution in combination with recirculation of air masses was probably the main cause of poor air quality during the other 18 days, although fires from Sumatra and probably also from Kalimantan (Indonesian part of the island of Borneo) added to the enhanced PM10 concentrations. The model versus measurement comparisons highlighted that for our study period and region the GFED3 biomass burning aerosol emissions were more in line with observations than found in other studies. This indicates that care should be taken when using AOD to constrain emissions or estimate ground-level air quality. This study also shows the need for relatively high resolution modeling to accurately reproduce the advection of air masses necessary to quantify the impacts and feedbacks on regional air quality.


2020 ◽  
Author(s):  
Margaret Marvin ◽  
Paul Palmer ◽  
Fei Yao ◽  
Barry Latter ◽  
Richard Siddans ◽  
...  

<p>Mainland and maritime Southeast Asia is home to more than 655 million people, representing nearly 10% of the global population. The dry season in this region is typically associated with intense biomass burning activity, which leads to a significant increase in surface air pollutants that are harmful to human health, including ozone (O<sub>3</sub>) and fine (radii smaller than 2.5 microns) particulate matter (PM<sub>2.5</sub>). Latitude-based differences in dry season timing and land use distinguish two regional biomass burning regimes: (1) agricultural waste burning on the peninsular mainland from February through April and (2) coastal peat burning across the equatorial islands in September and October. The type and amount of material burned determines the chemical composition of emissions and subsequently their impact on regional air quality. Understanding the individual and collective roles of these biomass burning regimes is a crucial step towards developing effective air quality mitigation strategies for Southeast Asia. Here, we use the nested GEOS-Chem atmospheric chemistry transport model (horizontal resolution of 0.25° x 0.3125°) to simulate fire-atmosphere interactions over Southeast Asia during March and September of 2014, when emissions peak from the two regional burning seasons. Based on our analysis of model output, we report how these two distinct biomass burning regimes impact the photochemical environment over Southeast Asia and what the resulting consequences are for surface air quality. We will also present a critical evaluation of our model using ground-based and satellite observations of atmospheric composition across the region.</p>


Sign in / Sign up

Export Citation Format

Share Document