scholarly journals Long-term brown carbon and smoke tracer observations in Bogotá, Colombia: association with medium-range transport of biomass burning plumes

2020 ◽  
Vol 20 (12) ◽  
pp. 7459-7472 ◽  
Author(s):  
Juan Manuel Rincón-Riveros ◽  
Maria Alejandra Rincón-Caro ◽  
Amy P. Sullivan ◽  
Juan Felipe Mendez-Espinosa ◽  
Luis Carlos Belalcazar ◽  
...  

Abstract. Light-absorbing aerosols emitted during open biomass burning (BB) events such as wildfires and agricultural burns have a strong impact on the Earth's radiation budget through both direct and indirect effects. Additionally, BB aerosols and gas-phase emissions can substantially reduce air quality at local, regional, and global scales, negatively affecting human health. South America is one of largest contributors to BB emissions globally. After Amazonia, the BB emissions from wildfires and agricultural burns in the grassland plains of northern South America (NSA) are the most significant in the region. However, few studies have analyzed the potential impact of NSA BB emissions on regional air quality. Recent evidence suggests that seasonal variations in air quality in several major cities in NSA could be associated with open biomass burning emissions, but it is still uncertain to what extent those sources impact air quality in the region. In this work, we report on 3 years of continuous equivalent black carbon (eBC) and brown carbon (BrC) observations at a hilltop site located upwind of the city of Bogotá, and we demonstrate its association with fires detected by the MODerate-resolution Imaging Spectroradiometer (MODIS) in a 3000 km × 2000 km domain. Offline PM2.5 filter samples collected during three field campaigns were analyzed to quantify water-soluble organic carbon (WSOC), organic and elemental carbon (OC∕EC), and biomass burning tracers such as levoglucosan, galactosan, and potassium. MODIS active fire data and HYSPLIT back trajectories were used to identify potential biomass burning plumes transported to the city. We analyzed the relationship between BrC, WSOC, water-soluble potassium, and levoglucosan to identify signals of the regional transport of BB aerosols. Our results confirm that regional biomass burning transport from wildfires occurs annually during the months of January and April. The seasonality of eBC closely followed that of PM2.5 at the city air quality stations; however, the observed seasonality of BrC is distinctly different to that of eBC and strongly associated with regional fire counts. The strong correlation between BrC and regional fire counts was observed at daily, weekly, and monthly timescales. WSOC at the measurement site was observed to increase linearly with levoglucosan during high BB periods and to remain constant at ∼2.5 µgC m−3 during the low BB seasons. Our findings show, for the first time in this region, that aged BB plumes can regularly reach densely populated areas in the Central Andes of northern South America. A source footprint analysis involving BrC observations, back trajectories, and remotely sensed fire activity shows that the eastern savannas in NSA are the main BB source region for the domain analyzed.

2020 ◽  
Author(s):  
Juan Manuel Rincón-Riveros ◽  
Maria Alejandra Rincón-Caro ◽  
Amy P. Sullivan ◽  
Juan Felipe Mendez-Espinosa ◽  
Luis Carlos Belalcazar ◽  
...  

Abstract. Light-absorbing aerosols emitted during open biomass burning (BB) events such as wildfires and agricultural burns have a strong impact on the Earth’s radiation budget through both direct and indirect effects. Additionally, BB aerosols and gas-phase emissions can substantially reduce air quality at local, regional, and global scales, negatively affecting human health. South America is one of largest contributors to BB emissions globally. After Amazonia, the BB emissions from the wildfires and agricultural burns in the grassland plains of Northern South America (NSA) are the most significant in the region. However, few studies have analyzed the potential impact of NSA BB emissions on regional air quality. Recent evidence suggests that seasonal variations in air quality in several major cities in NSA could be associated with open biomass burning emissions, but it is still uncertain to what those sources impact air quality in the region. In this work, we report on 3 years of continuous equivalent Black Carbon (eBC) and Brown Carbon (BrC) observations at a hill-top site located upwind of the city of Bogotá and we demonstrate its association with MODIS detected fires in a 3000 km × 2000 km domain. Off-line PM2.5 filter samples collected during three field campaigns were analyzed to quantify water-soluble organic carbon (WSOC), organic and elemental carbon (OC/EC), and biomass burning tracers such as levoglucosan, galactosan, and potassium. MODIS Active Fire Data and HYSPLIT back-trajectories were used to identify potential biomass burning plumes transported to the city. We analyzed the relationship between BrC, WSOC, water-soluble potassium, and levoglucosan to identify signals of regional transport of BB aerosols. Our results confirm that regional biomass burning transport from wildfires occurs annually during the months of January and April. The seasonality of eBC followed closely that of PM2.5 at the city air quality stations, however, the observed seasonality of BrC is distinctly different to that of eBC and strongly associated to regional fire counts. The strong correlation between BrC and regional fire counts was observed both at daily, weekly, and monthly time-scales. WSOC at the measurement site was observed to increase linearly with levoglucosan during high BB periods, and to remain constant at ∼ 2.5 µgC m−3 during the low BB activity seasons. Our findings show, for the first time in this region, that aged BB plumes can regularly reach densely populated areas in the Central Andes of Northern South America. A source footprint analysis involving BrC observations, back-trajectories, and remotely sensed fire activity shows that the eastern savannas in NSA are the main BB source region for the domain analyzed.


2019 ◽  
Vol 203 ◽  
pp. 131-140 ◽  
Author(s):  
J.F. Mendez-Espinosa ◽  
L.C. Belalcazar ◽  
R. Morales Betancourt

2020 ◽  
Vol 749 ◽  
pp. 141621 ◽  
Author(s):  
Juan F. Mendez-Espinosa ◽  
Nestor Y. Rojas ◽  
Jorge Vargas ◽  
Jorge E. Pachón ◽  
Luis C. Belalcazar ◽  
...  

2018 ◽  
Vol 18 (7) ◽  
pp. 1734-1745 ◽  
Author(s):  
Leila Droprinchinski Martins ◽  
Ricardo Hallak ◽  
Rafaela Cruz Alves ◽  
Daniela S. de Almeida ◽  
Rafaela Squizzato ◽  
...  

2019 ◽  
Vol 19 (9) ◽  
pp. 5771-5790 ◽  
Author(s):  
Eoghan Darbyshire ◽  
William T. Morgan ◽  
James D. Allan ◽  
Dantong Liu ◽  
Michael J. Flynn ◽  
...  

Abstract. We examine processes driving the vertical distribution of biomass burning pollution following an integrated analysis of over 200 pollutant and meteorological profiles measured in situ during the South AMerican Biomass Burning Analysis (SAMBBA) field experiment. This study will aid future work examining the impact of biomass burning on weather, climate and air quality. During the dry season there were significant contrasts in the composition and vertical distribution of haze between western and eastern regions of tropical South America. Owing to an active or residual convective mixing layer, the aerosol abundance was similar from the surface to ∼1.5 km in the west and ∼3 km in the east. Black carbon mass loadings were double as much in the east (1.7 µg m−3) than the west (0.85 µg m−3), but aerosol scattering coefficients at 550 nm were similar (∼120 Mm−1), as too were CO near-surface concentrations (310–340 ppb). We attribute these contrasts to the more flaming combustion of Cerrado fires in the east and more smouldering combustion of deforestation and pasture fires in the west. Horizontal wind shear was important in inhibiting mixed layer growth and plume rise, in addition to advecting pollutants from the Cerrado regions into the remote tropical forest of central Amazonia. Thin layers above the mixing layer indicate the roles of both plume injection and shallow moist convection in delivering pollution to the lower free troposphere. However, detrainment of large smoke plumes into the upper free troposphere was very infrequently observed. Our results reiterate that thermodynamics control the pollutant vertical distribution and thus point to the need for correct model representation so that the spatial distribution and vertical structure of biomass burning smoke is captured. We observed an increase of aerosol abundance relative to CO with altitude both in the background haze and plume enhancement ratios. It is unlikely associated with thermodynamic partitioning, aerosol deposition or local non-fire sources. We speculate it may be linked to long-range transport from West Africa or fire combustion efficiency coupled to plume injection height. Further enquiry is required to explain the phenomenon and explore impacts on regional climate and air quality.


2019 ◽  
Vol 19 (17) ◽  
pp. 11213-11233 ◽  
Author(s):  
Xiaoyan Liu ◽  
Yan-Lin Zhang ◽  
Yiran Peng ◽  
Lulu Xu ◽  
Chunmao Zhu ◽  
...  

Abstract. Biomass burning can significantly impact the chemical and optical properties of carbonaceous aerosols. Here, the biomass burning impacts were studied during wintertime in a megacity of Nanjing, eastern China. The high abundance of biomass burning tracers such as levoglucosan (lev), mannosan (man), galactosan (gal) and non-sea-salt potassium (nss-K+) was found during the studied period with the concentration ranges of 22.4–1476 ng m−3, 2.1–56.2 ng m−3, 1.4–32.2 ng m−3 and 0.2–3.8 µg m−3, respectively. The significant contribution of biomass burning to water-soluble organic carbon (WSOC; 22.3±9.9 %) and organic carbon (OC; 20.9±9.3 %) was observed in this study. Backward air mass origin analysis, potential emission sensitivity of elemental carbon (EC) and MODIS fire spot information indicated that the elevations of the carbonaceous aerosols were due to the transported biomass-burning aerosols from southeastern China. The characteristic mass ratio maps of lev∕man and lev∕nss-K+ suggested that the biomass fuels were mainly crop residuals. Furthermore, the strong correlation (p < 0.01) between biomass burning tracers (such as lev) and light absorption coefficient (babs) for water-soluble brown carbon (BrC) revealed that biomass burning emissions played a significant role in the light-absorption properties of carbonaceous aerosols. The solar energy absorption due to water-soluble brown carbon and EC was estimated by a calculation based on measured light-absorbing parameters and a simulation based on a radiative transfer model (RRTMG_SW). The solar energy absorption of water-soluble BrC in short wavelengths (300–400 nm) was 0.8±0.4 (0.2–2.3) W m−2 (figures in parentheses represent the variation range of each parameter) from the calculation and 1.2±0.5 (0.3–1.9) W m−2 from the RRTMG_SW model. The absorption capacity of water-soluble BrC accounted for about 20 %–30 % of the total absorption of EC aerosols. The solar energy absorption of water-soluble BrC due to biomass burning was estimated as 0.2±0.1 (0.0–0.9) W m−2, considering the biomass burning contribution to carbonaceous aerosols. Potential source contribution function model simulations showed that the solar energy absorption induced by water-soluble BrC and EC aerosols was mostly due to the regionally transported carbonaceous aerosols from source regions such as southeastern China. Our results illustrate the importance of the absorbing water-soluble brown carbon aerosols in trapping additional solar energy in the low-level atmosphere, heating the surface and inhibiting the energy from escaping the atmosphere.


2022 ◽  
Author(s):  
Junjun Deng ◽  
Hao Ma ◽  
Xinfeng Wang ◽  
Shujun Zhong ◽  
Zhimin Zhang ◽  
...  

Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine aerosols (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in North China, to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal but no evident diurnal variations in light absorption properties of BrC. In winter, BrC showed much stronger light absorbing ability since mass absorption efficiency at 365 nm (MAE365) (1.54 ± 0.33 m2 g−1), which was 1.8 times larger than that (0.84 ± 0.22 m2 g−1) in summer. Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3 ± 16.9 % and 44.6 ± 13.9 %, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation-emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The lowly-oxygenated components contributed more to winter and nighttime samples, while more-oxygenated components increased in summer and daytime samples. The higher humification index (HIX) together with lower biological index (BIX) and fluorescence index (FI) suggest that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much larger to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and at daytime. Especially, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.


2018 ◽  
Author(s):  
Jenny P. S. Wong ◽  
Maria Tsagaraki ◽  
Irini Tsiodra ◽  
Nikolaos Mihalopoulos ◽  
Kalliopi Violaki ◽  
...  

Abstract. Biomass burning is a major source of atmospheric brown carbon (BrC) and through its absorption of UV/VIS radiation, it can play an important role on the planetary radiative balance and atmospheric photochemistry. The considerable uncertainty of BrC impacts is associated with its poorly constrained sources, transformations and atmospheric lifetime. Here we report laboratory experiments that examined changes in the optical properties of the water-soluble BrC fraction of biomass burning particles. Effects of direct UVB photolysis and OH oxidation in the aqueous phase on molecular weight-separated BrC were studied. Results indicated that low molecular weight (MW) BrC ( 10 hours) biomass burning emissions, poor linear correlations were found between light absorptivity and levoglucosan, consistent with other studies suggesting a short atmospheric lifetime for levoglucosan. However, a much stronger correlation between light absorptivity and total hydrous sugars was observed, suggesting that they may serve as more robust tracers for aged biomass burning emissions. Overall, the results from this study suggest that robust model estimates of BrC radiative impacts require consideration of the atmospheric aging of BrC and the stability of high-MW BrC.


2019 ◽  
Vol 19 (11) ◽  
pp. 7319-7334 ◽  
Author(s):  
Jenny P. S. Wong ◽  
Maria Tsagkaraki ◽  
Irini Tsiodra ◽  
Nikolaos Mihalopoulos ◽  
Kalliopi Violaki ◽  
...  

Abstract. Biomass burning is a major source of atmospheric brown carbon (BrC), and through its absorption of UV/VIS radiation, it can play an important role in the planetary radiative balance and atmospheric photochemistry. The considerable uncertainty of BrC impacts is associated with its poorly constrained sources, transformations, and atmospheric lifetime. Here we report laboratory experiments that examined changes in the optical properties of the water-soluble (WS) BrC fraction of laboratory-generated biomass burning particles from hardwood pyrolysis. Effects of direct UVB photolysis and OH oxidation in the aqueous phase on molecular-weight-separated BrC were studied. Results indicated that the majority of low-molecular-weight (MW) BrC (<400 Da) was rapidly photobleached by both direct photolysis and OH oxidation on an atmospheric timescale of approximately 1 h. High MW BrC (≥400 Da) underwent initial photoenhancement up to ∼15 h, followed by slow photobleaching over ∼10 h. The laboratory experiments were supported by observations from ambient BrC samples that were collected during the fire seasons in Greece. These samples, containing freshly emitted to aged biomass burning aerosol, were analyzed for both water- and methanol-soluble BrC. Consistent with the laboratory experiments, high-MW BrC dominated the total light absorption at 365 nm for both methanol and water-soluble fractions of ambient samples with atmospheric transport times of 1 to 68 h. These ambient observations indicate that overall, biomass burning BrC across all molecular weights has an atmospheric lifetime of 15 to 28 h, consistent with estimates from previous field studies – although the BrC associated with the high-MW fraction remains relatively stable and is responsible for light absorption properties of BrC throughout most of its atmospheric lifetime. For ambient samples of aged (>10 h) biomass burning emissions, poor linear correlations were found between light absorptivity and levoglucosan, consistent with other studies suggesting a short atmospheric lifetime for levoglucosan. However, a much stronger correlation between light absorptivity and total hydrous sugars was observed, suggesting that they may serve as more robust tracers for aged biomass burning emissions. Overall, the results from this study suggest that robust model estimates of BrC radiative impacts require consideration of the atmospheric aging of BrC and the stability of high-MW BrC.


Sign in / Sign up

Export Citation Format

Share Document