Volatile organic compounds enhancing sulfuric acid-based ternary homogeneous nucleation: The important role of synergistic effect

2020 ◽  
Vol 233 ◽  
pp. 117609 ◽  
Author(s):  
Yu Zhao ◽  
Yi-Rong Liu ◽  
Shuai Jiang ◽  
Teng Huang ◽  
Zi-Hang Wang ◽  
...  
Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


2021 ◽  
Vol 21 (17) ◽  
pp. 13333-13351
Author(s):  
Alexandre Kukui ◽  
Michel Chartier ◽  
Jinhe Wang ◽  
Hui Chen ◽  
Sébastien Dusanter ◽  
...  

Abstract. Reaction of stabilized Criegee intermediates (SCIs) with SO2 was proposed as an additional pathway of gaseous sulfuric acid (H2SO4) formation in the atmosphere, supplementary to the conventional mechanism of H2SO4 production by oxidation of SO2 in reaction with OH radicals. However, because of a large uncertainty in mechanism and rate coefficients for the atmospheric formation and loss reactions of different SCIs, the importance of this additional source is not well established. In this work, we present an estimation of the role of SCIs in H2SO4 formation at a western Mediterranean (Cape Corsica) remote site, where comprehensive field observations including gas-phase H2SO4, OH radicals, SO2, volatile organic compounds (VOCs) and aerosol size distribution measurements were performed in July–August 2013 as a part of the project ChArMEx (Chemistry-Aerosols Mediterranean Experiment). The measurement site was under strong influence of local emissions of biogenic volatile organic compounds, including monoterpenes and isoprene generating SCIs in reactions with ozone, and, hence, presenting an additional source of H2SO4 via SO2 oxidation by the SCIs. Assuming the validity of a steady state between H2SO4 production and its loss by condensation on existing aerosol particles with a unity accommodation coefficient, about 90 % of the H2SO4 formation during the day could be explained by the reaction of SO2 with OH. During the night the oxidation of SO2 by OH radicals was found to contribute only about 10 % to the H2SO4 formation. The accuracy of the derived values for the contribution of OH + SO2 reaction to the H2SO4 formation is limited mostly by a large, at present factor of 2, uncertainty in the OH + SO2 reaction rate coefficient. The contribution of the SO2 oxidation by SCIs to the H2SO4 formation was evaluated using available measurements of unsaturated VOCs and steady-state SCI concentrations estimated by adopting rate coefficients for SCI reactions based on structure–activity relationships (SARs). The estimated concentration of the sum of SCIs was in the range of (1–3) × 103 molec. cm−3. During the day the reaction of SCIs with SO2 was found to account for about 10 % and during the night for about 40 % of the H2SO4 production, closing the H2SO4 budget during the day but leaving unexplained about 50 % of the H2SO4 formation during the night. Despite large uncertainties in used kinetic parameters, these results indicate that the SO2 oxidation by SCIs may represent an important H2SO4 source in VOC-rich environments, especially during nighttime.


2017 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
AdeoyeOyetunji Oyewopo ◽  
JosephBabatunde Dare ◽  
OlugbemiTope Olaniyan ◽  
AkunnaGodson Gabriel

2020 ◽  
Vol 289 ◽  
pp. 121494
Author(s):  
Jiraporn Buasakun ◽  
Phakinee Srilaoong ◽  
Gun Chaloeipote ◽  
Ramida Rattanakram ◽  
Chatchawal Wongchoosuk ◽  
...  

2016 ◽  
Vol 4 (24) ◽  
pp. 5564-5571 ◽  
Author(s):  
Shunichiro Ito ◽  
Amane Hirose ◽  
Madoka Yamaguchi ◽  
Kazuo Tanaka ◽  
Yoshiki Chujo

This manuscript describes the role of multi-functional gallium diiminate in photochemistry, crystal structural transition and molecular recognition.


2005 ◽  
Vol 5 (3) ◽  
pp. 2599-2642 ◽  
Author(s):  
A. Petzold ◽  
M. Gysel ◽  
X. Vancassel ◽  
R. Hitzenberger ◽  
H. Puxbaum ◽  
...  

Abstract. The European PartEmis project (''Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines'') was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. A comprehensive suite of aerosol, gas and chemi-ion measurements were conducted under different combustor operating conditions and fuel sulphur concentrations. Combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Modelling of CCN activation of combustion particles was conducted using microphysical and chemical properties obtained from the measurements as input data. Based on this unique data set, the role of sulphuric acid coatings on the combustion particles, formed in the cooling exhaust plume through either direct condensation of gaseous sulphuric acid or coagulation with volatile condensation particles nucleating from gaseous sulphuric acid, and the role of the organic fraction for the CCN activation of combustion particles was investigated. It was found that particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. Also the effect of the non-volatile OC fraction on the potential CCN activation is significant. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles.


Sign in / Sign up

Export Citation Format

Share Document