scholarly journals Surface ozone in the North American pollution outflow region of Nova Scotia: Long-term analysis of surface concentrations, precursor emissions and long-range transport influence

2021 ◽  
pp. 118536
Author(s):  
Morgan Mitchell ◽  
Aldona Wiacek ◽  
Ian Ashpole
2005 ◽  
Vol 39 (21) ◽  
pp. 8132-8141 ◽  
Author(s):  
Jianmin Ma ◽  
Srinivasan Venkatesh ◽  
Yi-fan Li ◽  
Zuohao Cao ◽  
Sreerama Daggupaty

2011 ◽  
Vol 8 (3) ◽  
pp. 5537-5562 ◽  
Author(s):  
Z. Xie ◽  
B. P. Koch ◽  
A. Möller ◽  
R. Sturm ◽  
R. Ebinghaus

Abstract. Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH) in the lower atmosphere ranged from 11.8 to 36.9 pg m−3 (mean: 26.6 ± 11.0 pg m−3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3) in the Southern Hemisphere (SH), respectively. Water concentrations were: α-HCH 0.33–46.8 pg l−1, γ-HCH 0.02–33.2 pg l−1 and β-HCH 0.11–2 pg l−1. HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold condensation and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3759 pg m−2 day−1) and γ-HCH (mean: 1987 pg m−2 day−1), whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1) and net deposition (range: 6–687 pg m−2 day−1), indicating a multi-hopper transport behavior. Climate change may significantly accelerate the releasing process of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.


2015 ◽  
Vol 15 (22) ◽  
pp. 32323-32365 ◽  
Author(s):  
G. Ancellet ◽  
J. Pelon ◽  
J. Totems ◽  
P. Chazette ◽  
A. Bazureau ◽  
...  

Abstract. Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.


2021 ◽  
Author(s):  
Leonie Villiger ◽  
Heini Wernli ◽  
Maxi Boettcher ◽  
Martin Hagen ◽  
Franziska Aemisegger

Abstract. Shallow clouds in the trade-wind region over the North Atlantic contribute substantially to the global radiative budget. In the vicinity of the Caribbean island Barbados, they appear in different mesoscale organisation patterns with distinct net cloud radiative effects (CRE). Cloud formation processes in this region are typically controlled by the prevailing large-scale subsidence. However, occasionally weather systems from remote origin cause significant disturbances. This study investigates the complex cloud-circulation interactions during the field campaign EUREC4A (Elucidate the Couplings Between Clouds, Convection and Circulation) from 16 January to 20 February 2020, using a combination of Eulerian and Lagrangian diagnostics. Based on observations and ERA5 reanalyses, we identify the relevant processes and characterise the formation pathways of two moist anomalies above the Barbados Cloud Observatory (BCO), one in the lower (~1000–650 hPa) and one in the middle troposphere (~650–300 hPa). These moist anomalies are associated with strongly negative CRE values and with contrasting long-range transport processes from the extratropics and the tropics, respectively. The low-level moist anomaly is characterised by an unusually thick cloud layer, high precipitation totals and a strongly negative CRE. Its formation is connected to an “extratropical dry intrusion” (EDI) that interacts with a trailing cold front. A quasi-climatological (2010–2020) analysis reveals that EDIs lead to different conditions at the BCO depending on how they interact with the associated cold front. Based on this climatology, we discuss the relevance of the strong large-scale forcing by EDIs for the low-cloud patterns near the BCO and the related CRE. The second case study about the mid-tropospheric moist anomaly is associated with an extended and persistent mixed-phase shelf cloud and the lowest daily CRE value observed during the campaign. Its formation is linked to “tropical mid-level detrainment” (TMD), which refers to detrainment from tropical deep convection near the melting layer. The quasi-climatological analysis shows that TMDs consistently lead to mid-tropospheric moist anomalies over the BCO and that the detrainment height controls the magnitude of the anomaly. However, no systematic relationship was found between the amplitude of this mid-tropospheric moist anomaly and the CRE at the BCO. Overall, this study reveals the important impact of the long-range transport, driven by dynamical processes either in the extratropics or the tropics, on the variability of the vertical structure of moisture and clouds, and on the resulting CRE in the North Atlantic winter trades.


2017 ◽  
Author(s):  
Zhe Jiang ◽  
Helen Worden ◽  
John R. Worden ◽  
Daven K. Henze ◽  
Dylan B. A. Jones ◽  
...  

Abstract. Decreases in surface emissions of nitrogen oxides (NOx = NO + NO2) in North America have led to substantial improvements in air-quality over the last several decades. Here we show that satellite observations of tropospheric nitrogen dioxide (NO2) columns over the contiguous United States (US) do not decrease after about 2009, while surface NO2 concentrations continue to decline through to the present. This divergence, if it continues, could have a substantial impact on surface air quality due to mixing of free-tropospheric air into the boundary layer. Our results show only limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, but we do find a possible relationship of NO2 changes to decadal climate variability. Our analysis demonstrates that the intensity of transpacific transport is stronger in El Niño years and weaker in La Niña years, and consequently, that decadal-scale climate variability impacts the contribution of Asian emissions on North American atmospheric composition. Because of the short lifetime, it is usually believed that the direct contribution of long-range transport to tropospheric NOx distribution is limited. If our hypothesis about transported Asian emissions is correct, then this observed divergence between satellite and surface NOx could indicate mechanisms that allow for either NOx or its reservoir species to have a larger than expected effect on North American tropospheric composition. These results therefore suggest more aircraft and satellite studies to determine the possible missing processes in our understanding of the long-range transport of tropospheric NOx.


2010 ◽  
Vol 49 (2) ◽  
pp. 203-220 ◽  
Author(s):  
In-Bo Oh ◽  
Yoo-Keun Kim ◽  
Mi-Kyung Hwang ◽  
Cheol-Hee Kim ◽  
Soontae Kim ◽  
...  

Abstract Elevated layers of high ozone concentration were observed over the Seoul metropolitan region (SMR) in Korea by ozonesonde measurements during 6–9 June 2003. An analysis of the synoptic-scale meteorological features and backward trajectories revealed that the layers were associated with the long-range transport of ozone from eastern China. Further examination of the long-range transport process responsible for the development of these layers was performed using the Community Multiscale Air Quality (CMAQ) model. CMAQ demonstrated that the upward mixing of ozone by convective activity in eastern China and subsequent horizontal transport aloft in the periphery of a slow-moving high pressure system led to the development of thick ozone layers over the SMR. Through comparative simulation studies, it was found that the surface ozone levels in the SMR can be significantly enhanced by the vertical down-mixing of ozone from the layer aloft with the growing mixed layer. On average, about 25% of the surface peak concentration in a given area during a high-ozone episode was due to the influence of the ozone layer aloft developed by the long-range transport process.


Sign in / Sign up

Export Citation Format

Share Document