Assimilation of the radar-derived water vapour mixing ratio into the LM COSMO model with a high horizontal resolution

2009 ◽  
Vol 92 (3) ◽  
pp. 331-342 ◽  
Author(s):  
Z. Sokol ◽  
D. Rezacova
2020 ◽  
Vol 1 (3-4) ◽  
pp. 339-354
Author(s):  
Valeria Garbero ◽  
Massimo Milelli

AbstractThe scope of this work is to assess the progresses made in the warning alert system of Piedmont since the 1994 flood. We used the COSMO model at high horizontal resolution forced by ERA5 re-forecast to simulate the November 1994 event, performing also a simple sensitivity test regarding the parameterization of convection. We compared the results with the original forecast and with the available observations, in order to understand how the emission of the alert would have been affected using the current operational system.


2018 ◽  
Vol 11 (9) ◽  
pp. 4981-5006 ◽  
Author(s):  
Christian Borger ◽  
Matthias Schneider ◽  
Benjamin Ertl ◽  
Frank Hase ◽  
Omaira E. García ◽  
...  

Abstract. Volume mixing ratio water vapour profiles have been retrieved from IASI (Infrared Atmospheric Sounding Interferometer) spectra using the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) processor. The retrievals are done for IASI observations that coincide with Vaisala RS92 radiosonde measurements performed in the framework of the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) in three different climate zones: the tropics (Manus Island, 2° S), mid-latitudes (Lindenberg, 52° N), and polar regions (Sodankylä, 67° N). The retrievals show good sensitivity with respect to the vertical H2O distribution between 1 km above ground and the upper troposphere. Typical DOFS (degrees of freedom for signal) values are about 5.6 for the tropics, 5.1 for summertime mid-latitudes, 3.8 for wintertime mid-latitudes, and 4.4 for summertime polar regions. The errors of the MUSICA IASI water vapour profiles have been theoretically estimated considering the contribution of many different uncertainty sources. For all three climate regions, unrecognized cirrus clouds and uncertainties in atmospheric temperature have been identified as the most important error sources and they can reach about 25 %. The MUSICA IASI water vapour profiles have been compared to 100 individual coincident GRUAN water vapour profiles. The systematic difference between the data is within 11 % below 12 km altitude; however, at higher altitudes the MUSICA IASI data show a dry bias with respect to the GRUAN data of up to 21 %. The scatter is largest close to the surface (30 %), but never exceeds 21 % above 1 km altitude. The comparison study documents that the MUSICA IASI retrieval processor provides H2O profiles that capture the large variations in H2O volume mixing ratio profiles well from 1 km above ground up to altitudes close to the tropopause. Above 5 km the observed scatter with respect to GRUAN data is in reasonable agreement with the combined MUSICA IASI and GRUAN random errors. The increased scatter at lower altitudes might be explained by surface emissivity uncertainties at the summertime continental sites of Lindenberg and Sodankylä, and the upper tropospheric dry bias might suggest deficits in correctly modelling the spectroscopic line shapes of water vapour.


2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2007 ◽  
Vol 7 (2) ◽  
pp. 5515-5552 ◽  
Author(s):  
C. Ren ◽  
A. R. MacKenzie ◽  
C. Schiller ◽  
G. Shur ◽  
V. Yushkov

Abstract. We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding water back to some of the trajectories, the LACM and instantaneous-dehydration reconstructions have a dry bias. The interpolated-ECMWF reconstruction does not suffer this dry bias, because convection in the ECMWF model moistens air parcels dramatically, by pumping moist air upwards. This indicates that the ECMWF model captures the gross features of the rehydration of air in the TTL by convection. Overall, the ECMWF models captures well the exponential decrease in total water mixing ratio with height above 250 hPa, so that all the reconstruction techniques capture more than 75% of the variance in the measured total water mixing ratios over the depth of the TTL. We have therefore developed a simple method for re-setting the total water in LACM using the ECMWF-analysed specific humidity in regions where the model predicts convection. By picking up the main contributing processes to dehydration and rehydration in the TTL, LACM reconstructs total water mixing ratios along aircraft flight tracks at the top of the TTL, close to the cold point, that are always in substantially better agreement with observations than instantaneous-dehydration reconstructions, and better than the ECMWF analysis for regions of high relative humidity and cloud.


Nature ◽  
1991 ◽  
Vol 354 (6352) ◽  
pp. 382-384 ◽  
Author(s):  
Keith P. Shine ◽  
Ashok Sinha

2020 ◽  
Vol 54 (11-12) ◽  
pp. 5065-5088 ◽  
Author(s):  
Alvaro Avila-Diaz ◽  
Gabriel Abrahão ◽  
Flavio Justino ◽  
Roger Torres ◽  
Aaron Wilson

2018 ◽  
Vol 11 (4) ◽  
pp. 2523-2536 ◽  
Author(s):  
Astrid Lampert ◽  
Jörg Hartmann ◽  
Falk Pätzold ◽  
Lennart Lobitz ◽  
Peter Hecker ◽  
...  

Abstract. To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.


Sign in / Sign up

Export Citation Format

Share Document