scholarly journals Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

2007 ◽  
Vol 7 (2) ◽  
pp. 5515-5552 ◽  
Author(s):  
C. Ren ◽  
A. R. MacKenzie ◽  
C. Schiller ◽  
G. Shur ◽  
V. Yushkov

Abstract. We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding water back to some of the trajectories, the LACM and instantaneous-dehydration reconstructions have a dry bias. The interpolated-ECMWF reconstruction does not suffer this dry bias, because convection in the ECMWF model moistens air parcels dramatically, by pumping moist air upwards. This indicates that the ECMWF model captures the gross features of the rehydration of air in the TTL by convection. Overall, the ECMWF models captures well the exponential decrease in total water mixing ratio with height above 250 hPa, so that all the reconstruction techniques capture more than 75% of the variance in the measured total water mixing ratios over the depth of the TTL. We have therefore developed a simple method for re-setting the total water in LACM using the ECMWF-analysed specific humidity in regions where the model predicts convection. By picking up the main contributing processes to dehydration and rehydration in the TTL, LACM reconstructs total water mixing ratios along aircraft flight tracks at the top of the TTL, close to the cold point, that are always in substantially better agreement with observations than instantaneous-dehydration reconstructions, and better than the ECMWF analysis for regions of high relative humidity and cloud.

2007 ◽  
Vol 7 (20) ◽  
pp. 5401-5413 ◽  
Author(s):  
C. Ren ◽  
A. R. MacKenzie ◽  
C. Schiller ◽  
G. Shur ◽  
V. Yushkov

Abstract. We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripy" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding water back to some of the trajectories, the LACM and instantaneous-dehydration reconstructions have a dry bias. The interpolated-ECMWF reconstruction does not suffer this dry bias, because convection in the ECMWF model moistens air parcels dramatically, by pumping moist air upwards. This indicates that the ECMWF model captures the gross features of the rehydration of air in the TTL by convection. Overall, the ECMWF models captures well the exponential decrease in total water mixing ratio with height above 250 hPa, so that all the reconstruction techniques capture more than 75% of the standard deviation in the measured total water mixing ratios over the depth of the TTL. By picking up the main contributing processes to dehydration and rehydration in the TTL, LACM reconstructs total water mixing ratios at the top of the TTL, close to the cold point, that are always in substantially better agreement with observations than instantaneous-dehydration reconstructions, and better than the ECMWF analysis for regions of high relative humidity and cloud.


2009 ◽  
Vol 66 (8) ◽  
pp. 2317-2334 ◽  
Author(s):  
Anning Cheng ◽  
Kuan-Man Xu

Abstract Formulating the contribution of subgrid-scale (SGS) variability to microphysical processes in boundary layer and deep convective cloud parameterizations is a challenging task because of the complexity of microphysical processes and the lack of subgrid-scale information. In this study, a warm-rain microphysics parameterization that is based on a joint double-Gaussian distribution of vertical velocity, liquid water potential temperature, total water mixing ratio, and perturbation of rainwater mixing ratio is developed to simulate drizzling boundary layer clouds with a single column model (SCM). The probability distribution function (PDF) is assumed, but its parameters evolve according to equations that invoke higher-order turbulence closure. These parameters are determined from the first-, second-, and third-order moments and are then used to derive analytical expressions for autoconversion, collection, and evaporation rates. The analytical expressions show that correlation between rainwater and liquid water mixing ratios of the Gaussians enhances the collection rate whereas that between saturation deficit and rainwater mixing ratios of the Gaussians enhances the evaporation rate. Cases of drizzling shallow cumulus and stratocumulus are simulated with large-eddy simulation (LES) and SCM runs (SCM-CNTL and SCM-M): LES explicitly resolves SGS variability, SCM-CNTL parameterizes SGS variability with the PDF-based scheme, but SCM-M uses the grid-mean profiles to calculate the conversion rates of microphysical processes. SCM-CNTL can well reproduce the autoconversion, collection, and evaporation rates from LES. Comparisons between the two SCM experiments showed improvements in mean profiles of potential temperature, total water mixing ratio, liquid water, and cloud amount in the simulations considering SGS variability. A 3-week integration using the PDF-based microphysics scheme indicates that the scheme is stable for long-term simulations.


2012 ◽  
Vol 12 (9) ◽  
pp. 25833-25885 ◽  
Author(s):  
F. Hasebe ◽  
Y. Inai ◽  
M. Shiotani ◽  
M. Fujiwara ◽  
H. Vömel ◽  
...  

Abstract. A network of balloon-born radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since late 1990s in the Tropical Pacific trying to capture the progress of dehydration for the air parcels advected horizontally in the Tropical Tropopause Layer (TTL). The analyses of this dataset are made on isentropes taking advantage of the conservative properties of tracers in adiabatic motion. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in the relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Further observational evidence is needed to confirm the credibility of such high values of RHice. The progress of TTL dehydration is reflected in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. The supersaturation exceeding the critical value of the homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on 360 and 365 K surfaces indicating that the cold trap dehydration is under progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) on 380 K on the other hand implies that this surface is not significantly cold for the advected air parcels to be dehydrated. Above 380 K, the cold trap dehydration would scarcely function while some moistening in turn occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.


2019 ◽  
Vol 19 (18) ◽  
pp. 11803-11820 ◽  
Author(s):  
Keun-Ok Lee ◽  
Thibaut Dauhut ◽  
Jean-Pierre Chaboureau ◽  
Sergey Khaykin ◽  
Martina Krämer ◽  
...  

Abstract. The source and pathway of the hydration patch in the TTL (tropical tropopause layer) that was measured during the Stratospheric and upper tropospheric processes for better climate predictions (StratoClim) field campaign during the Asian summer monsoon in 2017 and its connection to convective overshoots are investigated. During flight no. 7, two remarkable layers are measured in the TTL, namely (1) the moist layer (ML) with a water vapour content of 4.8–5.7 ppmv in altitudes of 18–19 km in the lower stratosphere and (2) the ice layer (IL) with ice content up to 1.9 eq. ppmv (equivalent parts per million by volume) in altitudes of 17–18 km in the upper troposphere at around 06:30 UTC on 8 August to the south of Kathmandu (Nepal). A Meso-NH convection-permitting simulation succeeds in reproducing the characteristics of the ML and IL. Through analysis, we show that the ML and IL are generated by convective overshoots that occurred over the Sichuan Basin about 1.5 d before. Overshooting clouds develop at altitudes up to 19 km, hydrating the lower stratosphere of up to 20 km with 6401 t of water vapour by a strong-to-moderate mixing of the updraughts with the stratospheric air. A few hours after the initial overshooting phase, a hydration patch is generated, and a large amount of water vapour (above 18 ppmv) remains at even higher altitudes up to 20.5 km while the anvil cloud top descends to 18.5 km. At the same time, a great part of the hydrometeors falls shortly, and the water vapour concentration in the ML and IL decreases due to turbulent diffusion by mixing with the tropospheric air, ice nucleation, and water vapour deposition. As the hydration patch continues to travel toward the south of Kathmandu, tropospheric tracer concentration increases up to ∼30 % and 70 % in the ML and IL, respectively. The air mass in the layers becomes gradually diffused, and it has less and less water vapour and ice content by mixing with the dry tropospheric air.


2016 ◽  
Author(s):  
Alison Ming ◽  
Amanda C. Maycock ◽  
Peter Hitchcock ◽  
Peter Haynes

Abstract. The prominent annual cycle in temperatures (with maximum peak to peak amplitude of ~ 8 K around 70 hPa and ~ 6 K at 90 hPa) is a key feature of the tropical tropopause layer (TTL). There is also a strong annual cycle observed in both ozone and water vapour in the TTL, with the latter understood as a consequence of the temperature annual cycle. The radiative contributions of the annual cycle in ozone and water vapour to the temperature annual cycle are studied, first with a seasonally evolving fixed dynamical heating calculation (SEFDH) where the dynamical heating is assumed to be unaffected by the radiative heating. In this framework, the variations in ozone and water vapour derived from satellite data lead to variations in temperature that are respectively in phase and out of phase with the observed annual cycle. The ozone contribution is at the upper range of previous calculations. This difference in phasing can be understood from the fact that an increase in water vapour cools the TTL, predominantly through enhanced local emission, whereas an increase in ozone warms the TTL, mostly through enhanced absorption of upwelling longwave radiation from the troposphere. The relative phasing of the water vapour and ozone effects on temperature is further influenced by the fact that for water vapour there is a strong non-local effect on temperatures from variations in concentrations occurring in lower layers of the TTL. In contrast, for ozone it is the local variations in concentration that have the strongest impact on local temperature variations. The factors that determine the vertical structure of the annual cycle in temperature are also examined. Radiative damping time scales are shown to maximize over a broad layer centred on the cold point. Non-radiative processes in the upper troposphere are inferred to impose a strong constraint on temperature perturbations below 130 hPa. These effects, combined with the annual cycles in dynamical and radiative heating, which both peak above the cold point, result in a maximum amplitude of temperature response that is relatively localized around 70 hPa. Finally, the SEFDH assumption is relaxed by considering the temperature responses to ozone and water vapour variations in a zonally symmetric dynamical model. While the magnitude of the tropical averaged temperature annual cycle in this framework is found to be consistent with the SEFDH results, the effects of the dynamical adjustment act to reduce the strong latitudinal gradients and inter-hemispheric asymmetry in the temperature response. This results in a temperature response that shows a considerably smoother structure than inferred from the SEFDH model. Whilst precise numerical values are likely to be sensitive to changes in the details of radiation code and of ozone and water vapour concentrations, the net contribution to the annual cycle in temperature from both ozone and water vapour averaged between 20° N–S, calculated in this work, is substantial and around 35 % of the observed peak to peak amplitude at both 70 hPa and 90 hPa.


2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.


2019 ◽  
Vol 19 (9) ◽  
pp. 6459-6479 ◽  
Author(s):  
Iris-Amata Dion ◽  
Philippe Ricaud ◽  
Peter Haynes ◽  
Fabien Carminati ◽  
Thibaut Dauhut

Abstract. The contribution of deep convection to the amount of water vapour and ice in the tropical tropopause layer (TTL) from the tropical upper troposphere (UT; around 146 hPa) to the tropopause level (TL; around 100 hPa) is investigated. Ice water content (IWC) and water vapour (WV) measured in the UT and the TL by the Microwave Limb Sounder (MLS; Version 4.2) are compared to the precipitation (Prec) measured by the Tropical Rainfall Measurement Mission (TRMM; Version 007). The two datasets, gridded within 2∘ × 2∘ horizontal bins, have been analysed during the austral convective season, December, January, and February (DJF), from 2004 to 2017. MLS observations are performed at 01:30 and 13:30 local solar time, whilst the Prec dataset is constructed with a time resolution of 1 h. The new contribution of this study is to provide a much more detailed picture of the diurnal variation of ice than is provided by the very limited (two per day) MLS observations. Firstly, we show that IWC represents 70 % and 50 % of the total water in the tropical UT and TL, respectively, and that Prec is spatially highly correlated with IWC in the UT (Pearson's linear coefficient R=0.7). We propose a method that uses Prec as a proxy for deep convection bringing ice up to the UT and TL during the growing stage of convection, in order to estimate the amount of ice injected into the UT and the TL, respectively. We validate the method using ice measurements from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) during the period DJF 2009–2010. Next, the diurnal cycle of injection of IWC into the UT and the TL by deep convection is calculated by the difference between the maximum and the minimum in the estimated diurnal cycle of IWC in these layers and over selected convective zones. Six tropical highly convective zones have been chosen: South America, South Africa, Pacific Ocean, Indian Ocean, and the Maritime Continent region, split into land (MariCont-L) and ocean (MariCont-O). IWC injection is found to be 2.73 and 0.41 mg m−3 over tropical land in the UT and TL, respectively, and 0.60 and 0.13 mg m−3 over tropical ocean in the UT and TL, respectively. The MariCont-L region has the greatest ice injection in both the UT and TL (3.34 and 0.42–0.56 mg m−3, respectively). The MariCont-O region has less ice injection than MariCont-L (0.91 mg m−3 in the UT and 0.16–0.34 mg m−3 in TL) but has the highest diurnal minimum value of IWC in the TL (0.34–0.37 mg m−3) among all oceanic zones.


2016 ◽  
Vol 16 (18) ◽  
pp. 12273-12286 ◽  
Author(s):  
Sergey M. Khaykin ◽  
Jean-Pierre Pommereau ◽  
Emmanuel D. Riviere ◽  
Gerhard Held ◽  
Felix Ploeger ◽  
...  

Abstract. High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular sounding, performed on a convective day and revealing water vapour enhancements of up to 0.6 ppmv as high as the 404 K (17.8 km) level. These are shown to originate from convective overshoots upwind detected by an S-band weather radar operating locally in Bauru. The accurate in situ observations uncover two independent moisture pathways into the tropical lower stratosphere, which are hardly detectable by space-borne sounders. We argue that the moistening by horizontal transport is limited by the weak meridional gradients of water, whereas the fast convective cross-tropopause transport, largely missed by global models, can have a substantial effect, at least at a regional scale.


2012 ◽  
Vol 12 (1) ◽  
pp. 371-380 ◽  
Author(s):  
R. Hossaini ◽  
M. P. Chipperfield ◽  
W. Feng ◽  
T. J. Breider ◽  
E. Atlas ◽  
...  

Abstract. We have used a global three-dimensional chemical transport model to quantify the impact of the very short-lived substances (VSLS) CHBr3, CH2Br2, CHBr2Cl, CHBrCl2, CH2BrCl and C2H5-Br on the bromine budget of the stratosphere. Atmospheric observations of these gases allow constraints on surface mixing ratios that, when incorporated into our model, contribute ~4.9–5.2 parts per trillion (ppt) of inorganic bromine (Bry) to the stratosphere. Of this total, ~76 % comes from naturally-emitted CHBr3 and CH2Br2. The remaining species individually contribute modest amounts. However, their accumulated total accounts for up to ~1.2 ppt of the supply and thus should not be ignored. We have compared modelled tropical profiles of a range of VSLS with observations from the recent 2009 NSF HIPPO-1 aircraft campaign. Modelled profiles agree reasonably well with observations from the surface to the lower tropical tropopause layer. We have also considered the poorly studied anthropogenic VSLS, C2H5Br, CH2BrCH2Br, n-C3H7Br and i-C3H7Br. We find the local atmospheric lifetime of these species in the tropical tropopause layer are ~183, 603, 39 and 49 days, respectively. These species, particularly C2H5Br and CH2BrCH2Br, would thus be important carriers of bromine to the stratosphere if emissions were to increase substantially. Our model shows ~70–73 % and ~80–85 % of bromine from these species in the tropical boundary layer can reach the lower stratosphere.


2014 ◽  
Vol 14 (12) ◽  
pp. 6195-6211 ◽  
Author(s):  
F. Carminati ◽  
P. Ricaud ◽  
J.-P. Pommereau ◽  
E. Rivière ◽  
S. Khaykin ◽  
...  

Abstract. The tropical deep overshooting convection is known to be most intense above continental areas such as South America, Africa, and the maritime continent. However, its impact on the tropical tropopause layer (TTL) at global scale remains debated. In our analysis, we use the 8-year Microwave Limb Sounder (MLS) water vapour (H2O), cloud ice-water content (IWC), and temperature data sets from 2005 to date, to highlight the interplays between these parameters and their role in the water vapour variability in the TTL, and separately in the northern and southern tropics. In the tropical upper troposphere (177 hPa), continents, including the maritime continent, present the night-time (01:30 local time, LT) peak in the water vapour mixing ratio characteristic of the H2O diurnal cycle above tropical land. The western Pacific region, governed by the tropical oceanic diurnal cycle, has a daytime maximum (13:30 LT). In the TTL (100 hPa) and tropical lower stratosphere (56 hPa), South America and Africa differ from the maritime continent and western Pacific displaying a daytime maximum of H2O. In addition, the relative amplitude between day and night is found to be systematically higher by 5–10% in the southern tropical upper troposphere and 1–3% in the TTL than in the northern tropics during their respective summer, indicative of a larger impact of the convection on H2O in the southern tropics. Using a regional-scale approach, we investigate how mechanisms linked to the H2O variability differ in function of the geography. In summary, the MLS water vapour and cloud ice-water observations demonstrate a clear contribution to the TTL moistening by ice crystals overshooting over tropical land regions. The process is found to be much more effective in the southern tropics. Deep convection is responsible for the diurnal temperature variability in the same geographical areas in the lowermost stratosphere, which in turn drives the variability of H2O.


Sign in / Sign up

Export Citation Format

Share Document