The relationship between PM2.5 pollution and aerosol radiative forcing in a heavy industrial city, Taiyuan, in China

2021 ◽  
pp. 105935
Author(s):  
Xinbing Ren ◽  
Junsong Wu ◽  
Chongshui Gong ◽  
Wenkang Gao ◽  
Dandan Zhao ◽  
...  
2019 ◽  
Vol 46 (7) ◽  
pp. 4039-4048 ◽  
Author(s):  
S. T. Turnock ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
M. Dalvi ◽  
F. M. O'Connor ◽  
...  

2004 ◽  
Vol 31 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. Pandithurai ◽  
R. T. Pinker ◽  
T. Takamura ◽  
P. C. S. Devara

2002 ◽  
Vol 29 (18) ◽  
pp. 27-1-27-4 ◽  
Author(s):  
S. Suresh Babu ◽  
S. K. Satheesh ◽  
K. Krishna Moorthy

2011 ◽  
Vol 32 (22) ◽  
pp. 7827-7845 ◽  
Author(s):  
Atul K. Srivastava ◽  
P. Pant ◽  
P. Hegde ◽  
Sachchidanand Singh ◽  
U. C. Dumka ◽  
...  

2006 ◽  
Vol 45 (4) ◽  
pp. 770 ◽  
Author(s):  
Manfred Wendisch ◽  
Detlef Müller ◽  
Ina Mattis ◽  
Albert Ansmann

2021 ◽  
Author(s):  
Matthew Kasoar ◽  
Douglas Hamilton ◽  
Daniela Dalmonech ◽  
Stijn Hantson ◽  
Gitta Lasslop ◽  
...  

<p>The CMIP6 Shared Socioeconomic Pathway (SSP) scenarios include projections of future changes in anthropogenic biomass-burning.  Globally, they assume a decrease in total fire emissions over the next century under all scenarios.  However, fire regimes and emissions are expected to additionally change with future climate, and the methodology used to project fire emissions in the SSP scenarios is opaque.</p><p>We aim to provide a more traceable estimate of future fire emissions under CMIP6 scenarios and evaluate the impacts for aerosol radiative forcing.  We utilise interactive wildfire emissions from four independent land-surface models (CLM5, JSBACH3.2, LPJ-GUESS, and ISBA-CTRIP) used within CMIP6 ESMs, and two different machine-learning methods (a random forest, and a generalised additive model) trained on historical data, to predict year 2100 biomass-burning aerosol emissions consistent with the CMIP6-modelled climate for three different scenarios: SSP126, SSP370, and SSP585.  This multi-method approach provides future fire emissions integrating information from observations, projections of climate, socioeconomic parameters and changes in vegetation distribution and fuel loads.</p><p>Our analysis shows a robust increase in fire emissions for large areas of the extra-tropics until the end of this century for all methods.  Although this pattern was present to an extent in the original SSP projections, both the interactive fire models and machine-learning methods predict substantially higher increases in extra-tropical emissions in 2100 than the corresponding SSP datasets.  Within the tropics the signal is mixed. Increases in emissions are largely driven by the temperature changes, while in some tropical areas reductions in fire emissions are driven by human factors and changes in precipitation, with the largest reductions in Africa. The machine-learning methods show a stronger reduction in the tropics than the interactive fire models, however overall there is strong agreement between both the models and the machine-learning methods.</p><p>We then use additional nudged atmospheric simulations with two state-of-the-art composition-climate models, UKESM1 and CESM2, to diagnose the impact of these updated fire emissions on aerosol burden and radiative forcing, compared with the original SSP prescribed emissions.  We provide estimates of future fire radiative forcing, compared to modern-day, under these CMIP6 scenarios which span both the severity of climate change in 2100, and the rate of reduction of other aerosol species.</p>


2018 ◽  
Vol 37 ◽  
pp. 03004
Author(s):  
Abdelouahid Tahiri ◽  
Mohamed Diouri

The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2


2018 ◽  
Vol 18 (17) ◽  
pp. 12845-12857 ◽  
Author(s):  
Christoph Brühl ◽  
Jennifer Schallock ◽  
Klaus Klingmüller ◽  
Charles Robert ◽  
Christine Bingen ◽  
...  

Abstract. This paper presents decadal simulations of stratospheric and tropospheric aerosol and its radiative effects by the chemistry general circulation model EMAC constrained with satellite observations in the framework of the ESA Aerosol CCI project such as GOMOS (Global Ozone Monitoring by Occultation of Stars) and (A)ATSR ((Advanced) Along Track Scanning Radiometer) on the ENVISAT (European Environmental Satellite), IASI (Infrared Atmospheric Sounding Interferometer) on MetOp (Meteorological Operational Satellite), and, additionally, OSIRIS (Optical Spectrograph and InfraRed Imaging System). In contrast to most other studies, the extinctions and optical depths from the model are compared to the observations at the original wavelengths of the satellite instruments covering the range from the UV (ultraviolet) to terrestrial IR (infrared). This avoids conversion artifacts and provides additional constraints for model aerosol and interpretation of the observations. MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) SO2 limb measurements are used to identify plumes of more than 200 volcanic eruptions. These three-dimensional SO2 plumes are added to the model SO2 at the eruption times. The interannual variability in aerosol extinction in the lower stratosphere, and of stratospheric aerosol radiative forcing at the tropopause, is dominated by the volcanoes. To explain the seasonal cycle of the GOMOS and OSIRIS observations, desert dust simulated by a new approach and transported to the lowermost stratosphere by the Asian summer monsoon and tropical convection turns out to be essential. This also applies to the radiative heating by aerosol in the lowermost stratosphere. The existence of wet dust aerosol in the lowermost stratosphere is indicated by the patterns of the wavelength dependence of extinction in observations and simulations. Additional comparison with (A)ATSR total aerosol optical depth at different wavelengths and IASI dust optical depth demonstrates that the model is able to represent stratospheric as well as tropospheric aerosol consistently.


Sign in / Sign up

Export Citation Format

Share Document