model aerosol
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 15 (1) ◽  
pp. 219-249
Author(s):  
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
...  

Abstract. The photolysis module in Environment and Climate Change Canada's online chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved to make use of the online size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Submodel System) photolysis module, through the use of the online aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea salt, dust and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for 2 months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and reanalysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD 1-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites, specifically, showed better correlation coefficients for urban AERONET sites and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications – version 2), with an overall underprediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impacts of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.


2021 ◽  
Author(s):  
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
...  

Abstract. The photolysis module in Environment and Climate Change Canada’s on-line chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved, to make use of the on-line size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Sub-Model System) photolysis module, through the use of the on-line aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea-salt, dust, and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for two months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and re-analysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module, and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD one-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites specifically, showed better correlation coefficients for urban AERONET sites, and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 re-analysis (Modern-Era Retrospective analysis for Research and Applications – Version 2), with an overall under-prediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impact of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes, are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.


2021 ◽  
Author(s):  
Tomoaki Yoshida ◽  
Eiji Shibata ◽  
Natsuki Ishida ◽  
Tomoya Nakatani

Abstract In the pandemic of COVID-19, a rigorous lockdown or social distancing will mitigate transmission, but some alternative strategy is needed especially for mass-gathering events. Given that the main path of transmission is through droplets or aerosols, a swift removal of them immediately after exhalation, which may attain “personal air zoning”, would be more effective and feasible than whole room ventilations. In the present study, an artificial fog was employed as a model aerosol to be exhaled and readily visualized on movies and quantified on dust indicators. The temporal and spatial distribution of this model microdroplet amounts corresponded reasonably well with previously published data, where talking air flow was quantified as a negative staining, in that it predominates below the mouth height rather than horizontal, and that it travels forward over 1.5 m in 30 sec. Under this model condition, nearly 99% of exhaled microdroplets could be efficiently blown up beyond the bystanders’ head heights, when a minimal air flow (2.5 m/s) was applied, using a typical personal cooling fan just below the chin. This swift upward removal of microdroplets would prevent bystanders’ immediate inhalation and provide sufficient probation periods for safe exhaustion from indoor spaces.


2021 ◽  
Author(s):  
Matthias Schwarz ◽  
Julien Savre ◽  
Annica Ekman

<p>Subtropical low-level marine stratocumulus clouds effectively reflect downwelling shortwave radiation while having a small effect on outgoing longwave radiation. Hence, they impose a strong negative net radiative effect on the Earth’s radiation balance. The optical and microphysical properties of these clouds are susceptible to anthropogenic changes in aerosol abundance. Although these aerosol-cloud-climate interactions (ACI) are generally explicitly treated in state-of-the-art Earth System Models (ESMs), they are accountable for large uncertainties in current climate projections.</p><p>Here, we present preliminary work where we exploit Large-Eddy-Simulations (LES) of warm stratocumulus clouds to identify and constrain processes and model assumptions that affect the response of cloud droplet number concentration (N<sub>d</sub>) to changes in aerosol number concentration (N<sub>a</sub>). Our results are based on simulations with the MISU-MIT Cloud-Aerosol (MIMICA, Savre et al., 2014) LES, which has two-moment bulk microphysics (Seifert and Beheng, 2001) and a two-moment aerosol scheme (Ekman et al., 2006). The reference simulation is based on observations made during the Dynamics and Chemistry of Marine Stratocumulus Field Study (DYCOMS-II, Stevens et al., 2003) which were used extensively during previous LES studies (e.g., Ackerman et al., 2009).</p><p>Starting from the reference simulation, we conduct sensitivity experiments to examine how the susceptibility (β=dln(N<sub>d</sub>)/dln(N<sub>a</sub>)) changes depending on different model setups. We run the model with fixed and interactive aerosol concentrations, with and without saturation adjustment, with different aerosol populations, and with different model parameter choices. Our early results suggest that β is sensitive to these choices and can vary roughly between 0.6 to 0.9 depending on the setup. The overall purpose of our study is to guide future model developments and evaluations concerning aerosol-cloud-climate interactions.  </p><p> </p><p><strong>References</strong></p><p>Ackerman, A. S., vanZanten, M. C., Stevens, B., Savic-Jovcic, V., Bretherton, C. S., Chlond, A., et al. (2009). Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer. Monthly Weather Review, 137(3), 1083–1110. https://doi.org/10.1175/2008MWR2582.1</p><p>Ekman, A. M. L., Wang, C., Ström, J., & Krejci, R. (2006). Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere. Journal of the Atmospheric Sciences, 63(2), 682–696. https://doi.org/10.1175/JAS3645.1</p><p>Savre, J., Ekman, A. M. L., & Svensson, G. (2014). Technical note: Introduction to MIMICA, a large-eddy simulation solver for cloudy planetary boundary layers. Journal of Advances in Modeling Earth Systems, 6(3), 630–649. https://doi.org/10.1002/2013MS000292</p><p>Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., et al. (2003). Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bulletin of the American Meteorological Society, 84(5), 579–594. https://doi.org/10.1175/BAMS-84-5-579</p>


2021 ◽  
Author(s):  
Mahtab Majdzadeh ◽  
Craig Stroud ◽  
Christopher Sioris ◽  
Paul Makar ◽  
Ayodeji Akingunola ◽  
...  

<p>The photolysis module in Environment and Climate Change Canada’s on-line chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved by using the on-line chemical composition and size-resolved representation of atmospheric aerosols in GEM-MACH to calculate the attenuation of radiation in the photolysis module.</p><p>We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Sub-Model System) photolysis routine through the use of the on-line aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parametrization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea-salt, dust and other internally mixed components.</p><p>In order to evaluate the effects of these modifications on the performance of the GEM-MACH model, a series of simulations with the updated version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) were carried out, and the model aerosol optical depth (AOD) output was compared to the previous version of MESSy-JVAL, satellite data, ground-based measurements, and re-analysis products. The comparison of the updated version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module and adopting the online interactive aerosol concentrations in GEM-MACH.</p>


2021 ◽  
Vol 21 (4) ◽  
pp. 2745-2764
Author(s):  
Adriana Bossolasco ◽  
Fabrice Jegou ◽  
Pasquale Sellitto ◽  
Gwenaël Berthet ◽  
Corinna Kloss ◽  
...  

Abstract. The Asian summer monsoon (ASM) traps convectively lifted boundary layer pollutants inside its upper-tropospheric lower-stratospheric Asian monsoon anticyclone (AMA). It is associated with a seasonal and spatially confined enhanced aerosol layer, called the Asian Tropopause Aerosol Layer (ATAL). Due to the dynamical variability of the AMA, the dearth of in situ observations in this region, the complexity of the emission sources and of transport pathways, knowledge of the ATAL properties in terms of aerosol budget, chemical composition, as well as its variability and temporal trend is still largely uncertain. In this work, we use the Community Earth System Model (CESM 1.2 version) based on the coupling of the Community Atmosphere Model (CAM5) and the MAM7 (Modal Aerosol Model) aerosol module to simulate the composition of the ATAL and its decadal trends. Our simulations cover a long-term period of 16 years from 2000 to 2015. We identify a typical “double-peak” vertical profile of aerosols for the ATAL. We attribute the upper peak (around 100 hPa, predominant during early ATAL, e.g., in June) to dry aerosols, possibly from nucleation processes, and the lower peak (around 250 hPa, predominant for a well-developed and late ATAL, e.g., in July and August) to cloud-borne aerosols associated with convective clouds. We find that mineral dust (present in both peaks) is the dominant aerosol by mass in the ATAL, showing a large interannual variability but no long-term trend, due to its natural variability. The results between 120 and 80 hPa (dry aerosol peak) suggest that for aerosols other than dust the ATAL is composed of around 40 % of sulfate, 30 % of secondary and 15 % of primary organic aerosols, 14 % of ammonium aerosols and less than 3 % of black carbon. Nitrate aerosols are not considered in MAM7. The analysis of the anthropogenic and biomass burning aerosols shows a positive trend for all aerosols simulated by CESM-MAM7.


2021 ◽  
Author(s):  
David A. Rothamer ◽  
Scott Sanders ◽  
Douglas Reindl ◽  
Timothy H. Bertram

AbstractThe impact of the COVID-19 pandemic continues to be significant and global. As the global community learns more about the novel coronavirus SARS-CoV-2, there is strong evidence that a significant modality of transmission is via the long-range airborne route, referred to here as aerosol transmission. In this paper, we evaluate the efficacy of ventilation, mask effective filtration efficiency, and the combined effect of the two on the reduction of aerosol infection probability for COVID-19 in a classroom setting. The Wells-Riley equation is used to predict the conditional probability of infection for three distinct airborne exposure scenarios: (1) an infectious instructor exposing susceptible students; (2) an infectious student exposing other susceptible students; and (3) an infectious student exposing a susceptible instructor. Field measurements were performed in a classroom using a polydisperse neutralized salt (NaCl) aerosol, generated in a size range consistent with human-generated SARS-CoV-2 containing bioaerosols, as a safe surrogate. Measurements included time-resolved and size-resolved NaCl aerosol concentration distributions and size-resolved effective filtration efficiency of different masks with and without mask fitters. The measurements were used to validate assumptions and inputs for the Wells-Riley model. Aerosol dynamics and distribution measurements confirmed that the majority of the classroom space is uniform in aerosol concentration within a factor of 2 or better for distances > 2 m from the aerosol source. Mask effective filtration efficiency measurements show that most masks fit poorly with estimated leakage rates typically > 50%, resulting in significantly reduced effective filtration efficiency. However, effective filtration efficiencies approaching the mask material filtration efficiency were achievable using simple mask fitters. Wells-Riley model results for the different scenarios suggest that ventilation of the classroom alone is not able to achieve infection probabilities less than 0.01 (1%) for air exchanges rates up to 10 h−1 and an event duration of one hour. The use of moderate to high effective filtration efficiency masks by all individuals present, on the other hand, was able to significantly reduce infection probability and could achieve reductions in infection probability by 5x, 10x, or even >100x dependent on the mask used and use of a mask fitter. This enables conditional infection probabilities < 0.001 (0.1%) or even < 0.0001 (0.01%) to be reached with the use of masks and mask fitters alone. Finally, the results demonstrate that the reductions provided by ventilation and masks are synergistic and multiplicative. The results reinforce the use of properly donned masks to achieve reduced aerosol transmission of SARS-CoV-2 and other infectious diseases transmitted via respiratory aerosol indoors and provide new motivation to further improve the effective filtration efficiency of common face coverings through improved design, and/or the use of mask fitters.


2021 ◽  
pp. 104989
Author(s):  
Max Blankart ◽  
Sandra Hasenfuss ◽  
Alina Rupprecht ◽  
Claudia Oellig ◽  
Wolfgang Schwack ◽  
...  

2020 ◽  
Vol 20 (21) ◽  
pp. 13355-13378
Author(s):  
Augustin Mortier ◽  
Jonas Gliß ◽  
Michael Schulz ◽  
Wenche Aas ◽  
Elisabeth Andrews ◽  
...  

Abstract. This study presents a multiparameter analysis of aerosol trends over the last 2 decades at regional and global scales. Regional time series have been computed for a set of nine optical, chemical-composition and mass aerosol properties by using the observations from several ground-based networks. From these regional time series the aerosol trends have been derived for the different regions of the world. Most of the properties related to aerosol loading exhibit negative trends, both at the surface and in the total atmospheric column. Significant decreases in aerosol optical depth (AOD) are found in Europe, North America, South America, North Africa and Asia, ranging from −1.2 % yr−1 to −3.1 % yr−1. An error and representativity analysis of the spatially and temporally limited observational data has been performed using model data subsets in order to investigate how much the observed trends represent the actual trends happening in the regions over the full study period from 2000 to 2014. This analysis reveals that significant uncertainty is associated with some of the regional trends due to time and space sampling deficiencies. The set of observed regional trends has then been used for the evaluation of 10 models (6 AeroCom phase III models and 4 CMIP6 models) and the CAMS reanalysis dataset and of their skills in reproducing the aerosol trends. Model performance is found to vary depending on the parameters and the regions of the world. The models tend to capture trends in AOD, the column Ångström exponent, sulfate and particulate matter well (except in North Africa), but they show larger discrepancies for coarse-mode AOD. The rather good agreement of the trends, across different aerosol parameters between models and observations, when co-locating them in time and space, implies that global model trends, including those in poorly monitored regions, are likely correct. The models can help to provide a global picture of the aerosol trends by filling the gaps in regions not covered by observations. The calculation of aerosol trends at a global scale reveals a different picture from that depicted by solely relying on ground-based observations. Using a model with complete diagnostics (NorESM2), we find a global increase in AOD of about 0.2 % yr−1 between 2000 and 2014, primarily caused by an increase in the loads of organic aerosols, sulfate and black carbon.


2020 ◽  
Vol 13 (9) ◽  
pp. 4645-4667
Author(s):  
Laaziz El Amraoui ◽  
Bojan Sič ◽  
Andrea Piacentini ◽  
Virginie Marécal ◽  
Nicolas Frebourg ◽  
...  

Abstract. This paper presents the first results about the assimilation of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) extinction coefficient measurements onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite in the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) chemistry transport model of Météo-France. This assimilation module is an extension of the aerosol optical depth (AOD) assimilation system already presented by Sič et al. (2016). We focus on the period of the TRAQA (TRAnsport à longue distance et Qualité de l’Air dans le bassin méditerranéen) field campaign that took place during summer 2012. This period offers the opportunity to have access to a large set of aerosol observations from instrumented aircraft, balloons, satellite and ground-based stations. We evaluate the added value of CALIOP assimilation with respect to the model free run by comparing both fields to independent observations issued from the TRAQA field campaign. In this study we focus on the desert dust outbreak which happened during late June 2012 over the Mediterranean Basin (MB) during the TRAQA campaign. The comparison with the AERONET (Aerosol Robotic Network) AOD measurements shows that the assimilation of CALIOP lidar observations improves the statistics compared to the model free run. The correlation between AERONET and the model (assimilation) is 0.682 (0.753); the bias and the root mean square error (RMSE), due to CALIOP assimilation, are reduced from −0.063 to 0.048 and from 0.183 to 0.148, respectively. Compared to MODIS (Moderate-resolution Imaging Spectroradiometer) AOD observations, the model free run shows an underestimation of the AOD values, whereas the CALIOP assimilation corrects this underestimation and shows a quantitative good improvement in terms of AOD maps over the MB. The correlation between MODIS and the model (assimilation) during the dust outbreak is 0.47 (0.52), whereas the bias is −0.18 (−0.02) and the RMSE is 0.36 (0.30). The comparison of in situ aircraft and balloon measurements to both modelled and assimilated outputs shows that the CALIOP lidar assimilation highly improves the model aerosol field. The evaluation with the LOAC (Light Optical Particle Counter) measurements indicates that the aerosol vertical profiles are well simulated by the direct model but with a general underestimation of the aerosol number concentration, especially in the altitude range 2–5 km. The CALIOP assimilation improves these results by a factor of 2.5 to 5. Analysis of the vertical distribution of the desert aerosol concentration shows that the aerosol dust transport event is well captured by the model but with an underestimated intensity. The assimilation of CALIOP observations allows the improvement of the geographical representation of the event within the model as well as its intensity by a factor of 2 in the altitude range 1–5 km.


Sign in / Sign up

Export Citation Format

Share Document