A novel approach to evaluate masonry arch stability on the basis of limit analysis theory and non-destructive geometric characterization

2013 ◽  
Vol 31 ◽  
pp. 140-148 ◽  
Author(s):  
B. Riveiro ◽  
M. Solla ◽  
I. de Arteaga ◽  
P. Arias ◽  
P. Morer
2021 ◽  
Vol 11 (14) ◽  
pp. 6630
Author(s):  
Bernardo Anes ◽  
Joao Figueiredo ◽  
Mouhaydine Tlemçani

Nowadays, the inner shape and economic viability of a stone block is dependent on the skill and experience of the “expert” that makes predictions based on external observations. This actual procedure is an extremely high empirical method, and when it fails, substantial work, time, and money is wasted. At present, researchers are committed to developing models to predict the stone block internal structure based on non-destructive tests. Ultrasonic tomography and electrical resistivity tomography are the tests that best fit these objectives. Trying to improve the existing procedures for collecting stone information and data exporting, a novel approach to perform both tomographies is proposed in this paper. This novel approach presents sound advantages regarding the current manual procedure: namely, (i) high accuracy due to a new automatic positioning system; (ii) no need for highly skilled operators to process measurements; (iii) measurements are much easier to derive, and results are quickly delivered. A comparison between the new automatic process and the current manual procedure shows that the manual procedure has a very low accuracy when compared to the new developed automatic system. The automatic measurements show extremely significant time savings, which is a relevant issue for the future competitiveness of the stone sector.


2021 ◽  
Vol 248 ◽  
pp. 113189
Author(s):  
Tommaso Papa ◽  
Nicola Grillanda ◽  
Gabriele Milani

2019 ◽  
Vol 104 ◽  
pp. 360-382 ◽  
Author(s):  
Luis Javier Sánchez-Aparicio ◽  
Álvaro Bautista-De Castro ◽  
Borja Conde ◽  
Pedro Carrasco ◽  
Luís F. Ramos

2020 ◽  
Vol 10 (10) ◽  
pp. 3490 ◽  
Author(s):  
Federico Accornero ◽  
Giuseppe Lacidogna

The evolutionary analysis of the fracturing process is an effective tool to assess of the structural bearing capacity of masonry arch bridges. Despite their plain basic assumptions, it must be remarked that elastic analysis and plastic or limit analysis can hardly be used to describe the response and predict damage for moderate or service load levels in masonry arch bridges. Therefore, a fracture mechanics-based analytical method with elastic-softening regime for masonry is suitable in order to study the global structural behaviour of arch bridges, highlighting how the arch thrust line is affected by crack formation, and the maximum admissible load evaluated by means of linear elastic fracture mechanics is larger than the load predicted by elasticity theory. Such an increment in terms of bearing capacity of the arch bridge can be defined “fracturing benefit”, and it is analogous to the “plastic benefit” of the plastic limit analysis. The fracturing process, which takes into account the fracture initiation and propagation in the masonry arch bulk, occurs before the set-in of the conditions established by means of the plastic limit analysis. In the present paper, the study of the elastic-fracture-plastic transitions is performed for three monumental masonry arch bridges with different shallowness and slenderness ratios. This application returns an accurate and effective whole service life assessment of masonry arch bridges, and more in general it can be suitable for a great number of historical masonry structures still having strategic or heritage importance in the infrastructure systems.


2020 ◽  
Vol 225 ◽  
pp. 111135
Author(s):  
Paolo Zampieri ◽  
Nicolò Simoncello ◽  
Jaime Gonzalez-Libreros ◽  
Carlo Pellegrino

2005 ◽  
Vol 02 (01) ◽  
pp. 63-76
Author(s):  
M. Z. ISKANDARANI ◽  
N. F. SHILBAYEH

An innovative NDT (non-destructive testing) technique for interrogating materials for their defects has been developed successfully. The technique has a novel approach to data analysis by employing intensity, RGB signal re-mix and wavelength variation of a thermally generated IR-beam onto the specimen under test which can be sensed and displayed on a computer screen as an image. Specimen inspection and data analysis are carried out through pixel level re-ordering and shelving techniques within a transformed image file using a sequence grouping and regrouping software system, which is specifically developed for this work. The interaction between an impact damaged RIM composite structure and thermal energy is recorded, analyzed, and modeled using an equivalent Electronic circuit. Effect of impact damage on the integrity of the composite structure is also discussed.


Sign in / Sign up

Export Citation Format

Share Document