Finite-time coordination in multiagent systems using sliding mode control approach

Automatica ◽  
2014 ◽  
Vol 50 (4) ◽  
pp. 1209-1216 ◽  
Author(s):  
Masood Ghasemi ◽  
Sergey G. Nersesov

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nan Liu ◽  
Rui Ling ◽  
Qin Huang ◽  
Zheren Zhu

Consensus tracking problem of the leader-follower multiagent systems is resolved via second-order super-twisting sliding mode control approach. The followers’ states can keep consistent with the leader’s states on sliding surfaces. The proposed approach can ensure the finite-time consensus if the directed graph of the nonlinear system has a directed path under the condition that leader’s control input is unavailable to any followers. It is proved by using the finite-time Lyapunov stability theory. Simulation results verify availability of the proposed approach.





2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Guowei ◽  
Wan Zhenkai ◽  
Li Chunqing

A sliding mode control approach is achieved for Lorenz system based on optimal finite time convergent and integral sliding mode surface. The system perturbation is divided into two parts: the unmatched and the matched parts. Firstly, we design a discontinuous control for the unmatched part which will not be amplified. Secondly, we design a continuous control, that is, the ideal control to stabilize the Lorenz system error states in finite time stabilization. Then the controller based on integral sliding mode is constructed to ensure the robustness. The proposed method is proven to guarantee the stability and the robustness using the Lyapunov theory in the system uncertainties and external perturbation. Finally, the numerical simulations demonstrate that the proposed controller is effective and robust with respect to the perturbation.



2019 ◽  
Vol 52 (5-6) ◽  
pp. 720-728
Author(s):  
Huawei Niu ◽  
Qixun Lan ◽  
Yamei Liu ◽  
Huafeng Xu

In this article, the continuous integral terminal sliding mode control problem for a class of uncertain nonlinear systems is investigated. First of all, based on homogeneous system theory, a global finite-time control law with simple structure is proposed for a chain of integrators. Then, inspired by the proposed finite-time control law, a novel integral terminal sliding mode surface is designed, based on which an integral terminal sliding mode control law is constructed for a class of higher order nonlinear systems subject disturbances. Furthermore, a finite-time disturbance observer-based integral terminal sliding mode control law is proposed, and strict theoretical analysis shows that the composite integral terminal sliding mode control approach can eliminate chattering completely without losing disturbance attenuation ability and performance robustness of integral terminal sliding mode control. Simulation examples are given to illustrate the simplicity of the new design approach and effectiveness.



2020 ◽  
Vol 67 (10) ◽  
pp. 2084-2088
Author(s):  
Lei Wang ◽  
Zhuoyue Song ◽  
Xiangdong Liu ◽  
Zhen Li ◽  
Tyrone Fernando ◽  
...  


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1333
Author(s):  
Sudipta Saha ◽  
Syed Muhammad Amrr ◽  
Abdelaziz Salah Saidi ◽  
Arunava Banerjee ◽  
M. Nabi

The active magnetic bearings (AMB) play an essential role in supporting the shaft of fast rotating machines and controlling the displacements in the rotors due to the deviation in the shaft. In this paper, an adaptive integral third-order sliding mode control (AITOSMC) is proposed. The controller suppresses the deviations in the rotor and rejects the system uncertainties and unknown disturbances present in the five DOF AMB system. The application of AITOSMC alleviates the problem of high-frequency switching called chattering, which would otherwise restrict the practical application of sliding mode control (SMC). Moreover, adaptive laws are also incorporated in the proposed approach for estimating the controller gains. Further, it also prevents the problem of overestimation and avoids the use of a priori assumption about the upper bound knowledge of total disturbance. The Lyapunov and homogeneity theories are exploited for the stability proof, which guarantees the finite-time convergence of closed-loop and output signals. The numerical analysis of the proposed strategy illustrates the effective performance. Furthermore, the comparative analysis with the existing control schemes demonstrates the efficacy of the proposed controller.



Sign in / Sign up

Export Citation Format

Share Document