scholarly journals Fixed-time sliding mode control with mismatched disturbances

Automatica ◽  
2021 ◽  
pp. 110009
Author(s):  
Emmanuel Moulay ◽  
Vincent Léchappé ◽  
Emmanuel Bernuau ◽  
Michael Defoort ◽  
Franck Plestan
2021 ◽  
Author(s):  
Xiaozhe Ju ◽  
Feng Wang ◽  
Yingzi Guan ◽  
Shihao Xu

Abstract This paper aims to settle the continuous prescribed-time stabilization problem of second-order nonlinear systems with mismatched disturbances. A continuous prescribed-time sliding mode control (CPTSMC) method with a prescribed-time extended state observer (PTESO) is proposed. The PTESO can precisely estimate the unknown states and disturbances, with its upper bound for the settling time (UBST) prescribed by only one parameter more tightly than existing finite-time or fixed-time ESOs. Furthermore, as a common concern for ESOs, the peaking value problem is well addressed. Then, a novel prescribed-time convergent form with little conservatism and simple tuning procedures is designed, and the internal mechanism in acquiring higher transient performance is explicitly researched. By using the estimated states and disturbances, the CPTSMC makes system states converge in a chattering-alleviated manner following the novel prescribed-time form. In addition to proving that the UBST of the whole system is tightly prescribed by only one design parameter, we show the continuity of the CPTSMC and the boundedness of all system signals, which are vital for practical applications. Ultimately, numerical simulations on the second-order system and a DC motor servo verify the efficiency of the proposed control system.


Author(s):  
Jianguo Guo ◽  
Shengjiang Yang ◽  
Zongyi Guo

This article investigates the robust tracking issue for the longitudinal dynamics of hypersonic vehicles subjected to mismatched uncertainties, and a novel sliding mode control approach is proposed to achieve the fixed-time convergence of tracking errors and satisfactory robustness against mismatched uncertainties. Establishing the control-oriented hypersonic vehicle model as velocity and altitude subsystems with mismatched uncertainties, the article introduces the nonlinear finite-time disturbance observer technique to estimate the uncertainties precisely. With the estimated uncertainties from the observer, the fixed-time sliding mode control is presented to track the velocity and altitude references. Consequently, the effect of the mismatched disturbances can be eliminated and the tracking performance can be improved. The stability of the closed-loop system is also analyzed. Numerical simulation results demonstrate the validity and superiority of the proposed control.


Sign in / Sign up

Export Citation Format

Share Document