scholarly journals Continuous Prescribed-Time Sliding Mode Control with A Prescribed-Time ESO for Second-Order Nonlinear Systems with Mismatched Disturbance

Author(s):  
Xiaozhe Ju ◽  
Feng Wang ◽  
Yingzi Guan ◽  
Shihao Xu

Abstract This paper aims to settle the continuous prescribed-time stabilization problem of second-order nonlinear systems with mismatched disturbances. A continuous prescribed-time sliding mode control (CPTSMC) method with a prescribed-time extended state observer (PTESO) is proposed. The PTESO can precisely estimate the unknown states and disturbances, with its upper bound for the settling time (UBST) prescribed by only one parameter more tightly than existing finite-time or fixed-time ESOs. Furthermore, as a common concern for ESOs, the peaking value problem is well addressed. Then, a novel prescribed-time convergent form with little conservatism and simple tuning procedures is designed, and the internal mechanism in acquiring higher transient performance is explicitly researched. By using the estimated states and disturbances, the CPTSMC makes system states converge in a chattering-alleviated manner following the novel prescribed-time form. In addition to proving that the UBST of the whole system is tightly prescribed by only one design parameter, we show the continuity of the CPTSMC and the boundedness of all system signals, which are vital for practical applications. Ultimately, numerical simulations on the second-order system and a DC motor servo verify the efficiency of the proposed control system.

Author(s):  
Guo Jianguo ◽  
Yang Shengjiang

A fixed-time sliding mode control (FTSMC) method is proposed for a second-order system with mismatched uncertainties in this paper. A new sliding mode, which is insensitive to the mismatched disturbance, is present to eliminate the effect of mismatched uncertainties by adopting the differentiable nonlinear function, and to obtain the fixed time stability independent of initial conditions by using the fraction-order function. In order to improve the performance of control system, the extended disturbance-observer-based fixed-time sliding mode control (EDO-FTSMC) approach is investigated to obtain the fixed-time stability subject to the mismatched uncertainties. Finally, the performance of the proposed control method is illustrated to compare other control approaches with numerical simulation results and application examples.


2014 ◽  
Vol 573 ◽  
pp. 285-290 ◽  
Author(s):  
B. Senthil Kumar ◽  
K.Suresh Manic

Sliding Mode Control is a robust Controller for Linear and Nonlinear plants where uncertainty in the model exists.Convetional controllers such as PID, Lead-lag Compensators do not to compensate for the uncertainties due to modeling and rejection to either matched or unmatched disturbances .The proposed method for controlling Unstable Second Order System with a zero by padmashree et al2 is taken from the literature for a Jacketed Continous Stirred-Tank Reactor.Introduction


Sign in / Sign up

Export Citation Format

Share Document