scholarly journals S8.21 Rapid effect of 3,5-diiodo-l-thyronine on mitochondrial fatty acid oxidation and thermogenesis in skeletal muscle

2008 ◽  
Vol 1777 ◽  
pp. S52-S53
Author(s):  
Assunta Lombardi ◽  
Rosa A. Busiello ◽  
Pieter de Lange ◽  
Elena Silvestri ◽  
Maria Moreno ◽  
...  
2009 ◽  
Vol 296 (3) ◽  
pp. E497-E502 ◽  
Author(s):  
A. Lombardi ◽  
P. de Lange ◽  
E. Silvestri ◽  
R. A. Busiello ◽  
A. Lanni ◽  
...  

Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T2) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T2 to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T2 induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T2 was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T2 stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/β-oxidation cycle/FADH2-linked respiratory pathways, where fatty acids are imported. T2 also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis (“proton leak”), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T2, and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T2 could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.


2013 ◽  
Vol 38 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Daisuke Hoshino ◽  
Yuko Yoshida ◽  
Yu Kitaoka ◽  
Hideo Hatta ◽  
Arend Bonen

High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30–55 m·min–1), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.


2007 ◽  
Vol 292 (6) ◽  
pp. E1782-E1789 ◽  
Author(s):  
Graham P. Holloway ◽  
A. Brianne Thrush ◽  
George J. F. Heigenhauser ◽  
Narendra N. Tandon ◽  
David J. Dyck ◽  
...  

A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass index (BMI) = 23.3 ± 0.7 kg/m2] and obese women (BMI = 37.6 ± 2.2 kg/m2). The mitochondrial marker enzymes citrate synthase (−34%), β-hydroxyacyl-CoA dehydrogenase (−17%), and cytochrome c oxidase (−32%) were reduced ( P < 0.05) in obese participants, indicating that mitochondrial content was diminished. Obesity did not alter the ability of isolated mitochondria to oxidize palmitate; however, fatty acid oxidation was reduced at the whole muscle level by 28% ( P < 0.05) in the obese. Mitochondrial fatty acid translocase (FAT/CD36) did not differ in lean and obese individuals, but mitochondrial FAT/CD36 was correlated with mitochondrial fatty acid oxidation ( r = 0.67, P < 0.05). We conclude that the reduction in fatty acid oxidation in obese individuals is attributable to a decrease in mitochondrial content, not to an intrinsic defect in the mitochondria obtained from skeletal muscle of obese individuals. In addition, it appears that mitochondrial FAT/CD36 may be involved in regulating fatty acid oxidation in human skeletal muscle.


2009 ◽  
Vol 50 (9) ◽  
pp. 1789-1799 ◽  
Author(s):  
David Sebastián ◽  
Maria Guitart ◽  
Celia García-Martínez ◽  
Caroline Mauvezin ◽  
Josep M. Orellana-Gavaldà ◽  
...  

2014 ◽  
Vol 307 (9) ◽  
pp. R1115-R1123 ◽  
Author(s):  
A. C. Maher ◽  
J. McFarlan ◽  
J. Lally ◽  
L. A. Snook ◽  
A. Bonen

In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk ( P < 0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (−22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (−18%). There was a tendency to increase fatty acid esterification (+10 nmol·g−1·60 min−1, P = 0.07), which reflected the reduction in fatty acid oxidation (−12 nmol·g−1·60 min−1). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls ( P < 0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (−18%, P < 0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.


2019 ◽  
Author(s):  
Helena Urquijo ◽  
Emma N Panting ◽  
Roderick N Carter ◽  
Emma J Agnew ◽  
Caitlin S Wyrwoll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document