scholarly journals Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes

Author(s):  
V. Calabrese ◽  
C. Cornelius ◽  
V. Leso ◽  
A. Trovato-Salinaro ◽  
B. Ventimiglia ◽  
...  
2014 ◽  
Vol 19 (4) ◽  
pp. 447-464 ◽  
Author(s):  
Philip L. Hooper ◽  
Gabor Balogh ◽  
Eric Rivas ◽  
Kylie Kavanagh ◽  
Laszlo Vigh

2019 ◽  
Vol 21 (1) ◽  
pp. 284 ◽  
Author(s):  
Maria Scuto ◽  
Paola Di Mauro ◽  
Maria Laura Ontario ◽  
Chiara Amato ◽  
Sergio Modafferi ◽  
...  

Meniere’s disease (MD) represents a clinical syndrome characterized by episodes of spontaneous vertigo, associated with fluctuating, low to medium frequencies sensorineural hearing loss (SNHL), tinnitus, and aural fullness affecting one or both ears. To date, the cause of MD remains substantially unknown, despite increasing evidence suggesting that oxidative stress and neuroinflammation may be central to the development of endolymphatic hydrops and consequent otholitic degeneration and displacement in the reuniting duct, thus originating the otolithic crisis from vestibular otolithic organs utricle or saccule. As a starting point to withstand pathological consequences, cellular pathways conferring protection against oxidative stress, such as vitagenes, are also induced, but at a level not sufficient to prevent full neuroprotection, which can be reinforced by exogenous nutritional approaches. One emerging strategy is supplementation with mushrooms. Mushroom preparations, used in traditional medicine for thousands of years, are endowed with various biological actions, including antioxidant, immunostimulatory, hepatoprotective, anticancer, as well as antiviral effects. For example, therapeutic polysaccharopeptides obtained from Coriolus versicolor are commercially well established. In this study, we examined the hypothesis that neurotoxic insult represents a critical primary mediator operating in MD pathogenesis, reflected by quantitative increases of markers of oxidative stress and cellular stress response in the peripheral blood of MD patients. We evaluated systemic oxidative stress and cellular stress response in MD patients in the absence and in the presence of treatment with a biomass preparation from Coriolus. Systemic oxidative stress was estimated by measuring, in plasma, protein carbonyls, hydroxynonenals (HNE), and ultraweak luminescence, as well as by lipidomics analysis of active biolipids, such as lipoxin A4 and F2-isoprostanes, whereas in lymphocytes we determined heat shock proteins 70 (Hsp72), heme oxygenase-1 (HO-1), thioredoxin (Trx), and γ-GC liase to evaluate the systemic cellular stress response. Increased levels of carbonyls, HNE, luminescence, and F2-isoprostanes were found in MD patients with respect to the MD plus Coriolus-treated group. This was paralleled by a significant (p < 0.01) induction, after Coriolus treatment, of vitagenes such as HO-1, Hsp70, Trx, sirtuin-1, and γ-GC liase in lymphocyte and by a significant (p < 0.05) increase in the plasma ratio-reduced glutathione (GSH) vs. oxidized glutathione (GSSG). In conclusion, patients affected by MD are under conditions of systemic oxidative stress, and the induction of vitagenes after mushroom supplementation indicates a maintained response to counteract intracellular pro-oxidant status. The present study also highlights the importance of investigating MD as a convenient model of cochlear neurodegenerative disease. Thus, searching innovative and more potent inducers of the vitagene system can allow the development of pharmacological strategies capable of enhancing the intrinsic reserve of vulnerable neurons, such as ganglion cells to maximize antidegenerative stress responses and thus providing neuroprotection.


2005 ◽  
Vol 233 (1-2) ◽  
pp. 145-162 ◽  
Author(s):  
Vittorio Calabrese ◽  
Raffaele Lodi ◽  
Caterina Tonon ◽  
Velia D'Agata ◽  
Maria Sapienza ◽  
...  

2007 ◽  
Vol 12 (4) ◽  
pp. 299 ◽  
Author(s):  
Vittorio Calabrese ◽  
Cesare Mancuso ◽  
Maria Sapienza ◽  
Eduardo Puleo ◽  
Stella Calafato ◽  
...  

2010 ◽  
Vol 35 (12) ◽  
pp. 2208-2217 ◽  
Author(s):  
Vittorio Calabrese ◽  
C. Cornelius ◽  
L. Maiolino ◽  
M. Luca ◽  
R. Chiaramonte ◽  
...  

2021 ◽  
Vol 7 (11) ◽  
pp. 981
Author(s):  
Logan T. Blancett ◽  
Kauri A. Runge ◽  
Gabriella M. Reyes ◽  
Lauren A. Kennedy ◽  
Sydney C. Jackson ◽  
...  

The stress response gene DDR48 has been characterized in Saccharomyces cerevisiae and Candida albicans to be involved in combating various cellular stressors, from oxidative agents to antifungal compounds. Surprisingly, the biological function of DDR48 has yet to be identified, though it is likely an important part of the stress response. To gain insight into its function, we characterized DDR48 in the dimorphic fungal pathogen Histoplasma capsulatum. Transcriptional analyses showed preferential expression of DDR48 in the mycelial phase. Induction of DDR48 in Histoplasma yeasts developed after treatment with various cellular stress compounds. We generated a ddr48∆ deletion mutant to further characterize DDR48 function. Loss of DDR48 alters the transcriptional profile of the oxidative stress response and membrane synthesis pathways. Treatment with ROS or antifungal compounds reduced survival of ddr48∆ yeasts compared to controls, consistent with an aberrant cellular stress response. In addition, we infected RAW 264.7 macrophages with DDR48-expressing and ddr48∆ yeasts and observed a 50% decrease in recovery of ddr48∆ yeasts compared to wild-type yeasts. Loss of DDR48 function results in numerous negative effects in Histoplasma yeasts, highlighting its role as a key player in the global sensing and response to cellular stress by fungi.


2005 ◽  
Vol preprint (2007) ◽  
pp. 1
Author(s):  
Vittorio Calabrese ◽  
Cesare Mancuso ◽  
Maria Sapienza ◽  
Eleonora Guagliano ◽  
Eduardo Puleo ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 123-123
Author(s):  
George Sutphin ◽  
Hope Dang ◽  
Emily Turner ◽  
Destiny DeNicola ◽  
Sage Hamming ◽  
...  

Abstract Cells are constantly subjected to a variety of intrinsic and extrinsic stresses—oxidative, protein misfolding, osmotic—and respond by activating a range of molecular pathways to mitigate and repair damage—oxidative stress response, unfolded protein response, osmotic stress response. While individual stress response pathways have been described in detail, and some interventions improve resistance to multiple forms of stress (e.g. dietary restriction, insulin signaling inhibition), surprisingly little is known about how these responses differ when cells are challenged with multiple types of stress simultaneously. The molecular architecture underlying multi-stress response has broad implications for aging and age-associated disease. One characteristic of aging is a progressive increase in multiple categories of cellular stress accompanied by a decline in cellular stress response capability. Human diseases rarely involve a single form of stress—Alzheimer’s disease is characterized by neuroinflammation, oxidative stress, and misfolded proteins, while cancer exhibits oxidative stress, DNA damage, and localized hypoxia. Determining how cells respond differently to one form of stress in the presence of another is critical to building an accurate model of the aging cellular environment. We are using Caenorhabditis elegans to systematically evaluate the molecular network that cells employ when challenged by multiple simultaneous stressors and how different stress combinations impact organismal survival and health. Here we present our initial characterization of C. elegans response to multiple categories of cellular stress (oxidative, osmotic, ER, Golgi, heavy metal), which stressors elicit non-additive interactions when combined, and how these combinations impact survival, health, and established stress response pathways.


Sign in / Sign up

Export Citation Format

Share Document