scholarly journals Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants

2019 ◽  
Vol 1863 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Wangxiao He ◽  
Pietro Mazzuca ◽  
Weirong Yuan ◽  
Kristen Varney ◽  
Antonella Bugatti ◽  
...  
2015 ◽  
Vol 112 (46) ◽  
pp. 14331-14336 ◽  
Author(s):  
Riccardo Dolcetti ◽  
Cinzia Giagulli ◽  
Wangxiao He ◽  
Marina Selleri ◽  
Francesca Caccuri ◽  
...  

Although in decline after successful anti-HIV therapy, B-cell lymphomas are still elevated in HIV-1-seropositive (HIV+) persons, and the mechanisms are obscure. The HIV-1 matrix protein p17 persists in germinal centers long after HIV-1 drug suppression, and some p17 variants (vp17s) activate Akt signaling and promote growth of transformed B cells. Here we show that vp17s derived from four of five non-Hodgkin lymphoma (NHL) tissues from HIV+ subjects display potent B-cell growth-promoting activity. They are characterized by amino acid insertions at position 117–118 (Ala–Ala) or 125–126 (Gly–Asn or Gly–Gln–Ala–Asn–Gln–Asn) among some other mutations throughout the sequence. Identical dominant vp17s are found in both tumor and plasma. Three of seven plasma samples from an independent set of NHL cases manifested multiple Ala insertions at position 117–118, and one with the Ala–Ala profile also promoted B-cell growth and activated Akt signaling. Ultradeep pyrosequencing showed that vp17s with C-terminal insertions are more frequently detected in plasma of HIV+ subjects with than without NHL. Insertion of Ala–Ala at position 117–118 into reference p17 (refp17) was sufficient to confer B-cell growth-promoting activity. In contrast, refp17 bearing the Gly–Asn insertion at position 125–126 did not, suggesting that mutations not restricted to the C terminus can also account for this activity. Biophysical analysis revealed that the Ala–Ala insertion mutant is destabilized compared with refp17, whereas the Gly–Asn form is stabilized. This finding provides an avenue for further exploration of structure function relationships and new treatment strategies in combating HIV-1–related NHL.


Author(s):  
Wangxiao He, ◽  
Federica Campilongo, ◽  
Francesca Caccuri, ◽  
Weirong Yuan, ◽  
Kristen Varney, ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Cinzia Giagulli ◽  
Pasqualina D’Ursi ◽  
Wangxiao He ◽  
Simone Zorzan ◽  
Francesca Caccuri ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Yu Wang ◽  
Jinzhi Cheng ◽  
Man Luo ◽  
Jianwei Wu ◽  
Guo Guo

Abstract Peritrophic matrix/membrane (PM) critically prevents the midgut of insects from external invasion by microbes. The proteins in the peritrophic membrane are its major structural components. Additionally, they determine the formation and function of this membrane. However, the role of PM proteins in immune regulation is unclear. Herein, we isolated a novel PM protein (MdPM-17) from Musca domestica larvae. Further, the function of MdPM-17 in regulating host innate immunity was identified. Results showed that the cDNA of MdPM-17 full is 635 bp in length. Moreover, it consists of a 477-bp open reading frame encoding 158 amino acid residues. These amino acid residues are composed of two Chitin-binding type-2 domain (ChtBD2) and 19 amino acids as a signal peptide. Moreover, tissue distribution analysis indicates that MdPM-17 was enriched expressed in midgut, and moderate levels in the fat body, foregut, and malpighian tubule. Notably, MdPM-17 recombinant protein showed high chitin-binding capacity, thus belongs to the Class III PM protein group. MdPM-17 protein silencing via RNA interference resulted in the expression of antimicrobial peptide (defensin, cecropins, and diptericin) genes, and this occurred after oral inoculation with exogenous microbes Escherichia coli (Enterobacteriales:Enterobacteriaceae), Staphylococcus aureus (Bacillales:Staphylococcaceae), and Candida albicans (Endomycetales:Saccharomycetaceae)). Therefore, all the antimicrobial peptide (AMP) gene expression levels are high in MdPM-17-depleted larvae during microbial infection compared to controls. Consequently, these findings indicate that MdPM-17 protein is associated with the antibacterial response from the housefly.


2021 ◽  
pp. 100934
Author(s):  
Antonella Bugatti ◽  
Francesca Caccuri ◽  
Federica Filippini ◽  
Cosetta Ravelli ◽  
Arnaldo Caruso
Keyword(s):  
B Cell ◽  

2004 ◽  
Vol 200 (4) ◽  
pp. 519-525 ◽  
Author(s):  
Bradley T. Messmer ◽  
Emilia Albesiano ◽  
Dimitar G. Efremov ◽  
Fabio Ghiotto ◽  
Steven L. Allen ◽  
...  

Previous studies suggest that the diversity of the expressed variable (V) region repertoire of the immunoglobulin (Ig)H chain of B-CLL cells is restricted. Although limited examples of marked constraint in the primary structure of the H and L chain V regions exist, the possibility that this level of restriction is a general principle in this disease has not been accepted. This report describes five sets of patients, mostly with unmutated or minimally mutated IgV genes, with strikingly similar B cell antigen receptors (BCRs) arising from the use of common H and L chain V region gene segments that share CDR3 structural features such as length, amino acid composition, and unique amino acid residues at recombination junctions. Thus, a much more striking degree of structural restriction of the entire BCR and a much higher frequency of receptor sharing exists among patients than appreciated previously. The data imply that either a significant fraction of B-CLL cells was selected by a limited set of antigenic epitopes at some point in their development and/or that they derive from a distinct B cell subpopulation with limited Ig V region diversity. These shared, stereotyped Ig molecules may be valuable probes for antigen identification and important targets for cross-reactive idiotypic therapy.


Virology ◽  
2009 ◽  
Vol 384 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Shufang Fan ◽  
Guohua Deng ◽  
Jiasheng Song ◽  
Guobin Tian ◽  
Yongbing Suo ◽  
...  

2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


2001 ◽  
Vol 75 (15) ◽  
pp. 7184-7187 ◽  
Author(s):  
Anne Yvon-Groussin ◽  
Pierre Mugnier ◽  
Philippe Bertin ◽  
Marc Grandadam ◽  
Henri Agut ◽  
...  

ABSTRACT Human foamy virus (HFV), a retrovirus of simian origin which occasionally infects humans, is the basis of retroviral vectors in development for gene therapy. Clinical considerations of how to treat patients developing an uncontrolled infection by either HFV or HFV-based vectors need to be raised. We determined the susceptibility of the HFV to dideoxynucleosides and found that only zidovudine was equally efficient against the replication of human immunodeficiency virus type 1 (HIV-1) and HFV. By contrast, zalcitabine (ddC), lamivudine (3TC), stavudine (d4T), and didanosine (ddI) were 3-, 3-, 30-, and 46-fold less efficient against HFV than against HIV-1, respectively. Some amino acid residues known to be involved in HIV-1 resistance to ddC, 3TC, d4T, and ddI were found at homologous positions of HFV reverse transcriptase (RT). These critical amino acids are located at the same positions in the three-dimensional structure of HIV-1 and HFV RT, suggesting that both enzymes share common patterns of inhibition.


Sign in / Sign up

Export Citation Format

Share Document