scholarly journals Phosphatidylinositol-3-phosphate-mediated actin domain formation linked to DNA synthesis upon insulin treatment in rat hepatoma-derived H4IIEC3 cells

2019 ◽  
Vol 1866 (5) ◽  
pp. 793-805
Author(s):  
Fumi Kano ◽  
Masayuki Murata
1996 ◽  
Vol 316 (1) ◽  
pp. 273-277 ◽  
Author(s):  
Tiina SOININEN ◽  
Marja K. LIISANANTTI ◽  
Antti E. I. PAJUNEN

We have investigated expression of the S-adenosylmethionine decarboxylase (AdoMetDC) gene in H4-II-E rat hepatoma cells treated with growth factors (epidermal growth factor and transforming growth factor β1) and inducers (cAMP and insulin). Treatment with insulin caused a marked increase in both RNA level and enzyme activity. The stability of AdoMetDC mRNA was not altered by insulin treatment: the accumulation of mRNA in hepatoma cells therefore seems to be due to an increase in the transcription rate. Cycloheximide was found to be a strong inducer of AdoMetDC mRNA transcription and the effects of insulin and cycloheximide were additive, suggesting that they increase expression by separate mechanisms. Chloramphenicol acetyltransferase assays in rat hepatoma cells using 5´ flanking regions of different lengths revealed that the promoter region extending 337 bp upstream from the transcription start site contains elements involved in insulin response.


2000 ◽  
Vol 348 (2) ◽  
pp. 351-358 ◽  
Author(s):  
Katia COULONVAL ◽  
Fabrice VANDEPUT ◽  
Rob C. STEIN ◽  
Sara C. KOZMA ◽  
Françoise LAMY ◽  
...  

The proliferation of most normal cells depends on the co-operation of several growth factors and hormones, each with a specific role, but the key events involved in the action of each necessary stimulant remain largely uncharacterized. In the present study, the pathways involved in the mechanism(s) of co-operation have been investigated in primary cultures of dog thyroid epithelial cells. In this physiologically relevant system, thyroid stimulating hormone (TSH) acting through cAMP, epidermal growth factor (EGF) and phorbol esters (such as PMA) induce DNA synthesis. Their effect requires stimulation of the insulin-like growth factor-1 (IGF-1) receptor by either IGF-1 or insulin, which are not themselves mitogenic agents. In contrast, hepatocyte growth factor (HGF) is itself fully mitogenic. The results of the study demonstrate that cAMP, EGF, HGF and PMA stimulate p70 ribosomal S6 kinase (p70 S6 kinase). However, insulin/IGF-1 also stimulate p70 S6 kinase. Thus stimulation of p70 S6 kinase might be necessary, but is certainly not sufficient, for the induction of DNA synthesis and is not specific for any stimulated pathway. In contrast, phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase B (PKB) activation by insulin and HGF is strong and sustained, whereas it is weak and transient with EGF and absent in the presence of TSH or PMA. These findings suggest that: (i) stimulation of PI 3-kinases and/or PKB is not involved in the cAMP-dependent pathways leading to thyrocyte proliferation, or in the action of PMA, (ii) the stimulation of the PI 3-kinase/PKB pathway may account for the permissive action of insulin/IGF-1 in the proliferation of these cells, and (iii) the stimulation of this pathway by HGF may explain why this agent does not require insulin or IGF-1 for its mitogenic action.


1997 ◽  
Vol 17 (1) ◽  
pp. 190-198 ◽  
Author(s):  
E U Frevert ◽  
B B Kahn

Phosphatidylinositol 3-kinase (PI3K) activation is necessary for many insulin-induced metabolic and mitogenic responses. However, it is unclear whether PI3K activation is sufficient for any of these effects. To address this question we increased PI3K activity in differentiated 3T3-L1 adipocytes by adenovirus-mediated expression of both the inter-SH2 region of the regulatory p85 subunit of PI3K (iSH2) and the catalytic p110 alpha subunit (p110). Coexpression resulted in PI3K activity that exceeded insulin-stimulated activity by two- to fivefold in cytosol, total membranes, and the low density microsome (LDM) fraction, the site of greatest insulin stimulation. While insulin increased glucose transport 15-fold, coexpression of iSH2-p110 increased transport (5.2-) +/- 0.7-fold with a parallel increase in GLUT4 translocation to the plasma membrane. Constitutive activation of PI3K had no effect on maximally insulin-stimulated glucose transport. Neither basal nor insulin-stimulated activity of glycogen synthase or mitogen-activated protein kinase was altered by iSH2-p110 coexpression. DNA synthesis was increased twofold by insulin in control 3T3-L1 adipocytes transduced with beta-galactosidase-encoding recombinant adenovirus, while iSH2-p110 coexpression increased DNA synthesis fivefold. These data indicate that (i) increased PI3K activity is sufficient to activate some but not all metabolic responses to insulin, (ii) activation of PI3K to levels exceeding the effect of insulin in adipocyte LDM results in only a partial stimulation of glucose transport, and (iii) increased PI3K activity in the absence of growth factor or oncoprotein stimulation is a potent stimulus of DNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document