Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: A comparative analysis

Author(s):  
Ashima Khosla ◽  
Padmavati Khandnor ◽  
Trilok Chand
2021 ◽  
Author(s):  
Denis A Engemann ◽  
Apolline Mellot ◽  
Richard Hoechenberger ◽  
Hubert Banville ◽  
David Sabbagh ◽  
...  

Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints.


2020 ◽  
Author(s):  
Tejas Wadiwala ◽  
Vikas Trikha ◽  
Jinan Fiaidhi

<p><b>This paper attempts to perform a comparative analysis of brain signals dataset using various machine learning classifiers such as random forest, gradient boosting, support vector machine, extra trees classifier. The comparative analysis is accomplished based on the performance parameters such as accuracy, area under the ROC curve (AUC), specificity, recall, and precision. The key focus of this paper is to exercise the machine learning practices over an Electroencephalogram (EEG) signals dataset provided by Rochester Institute of Technology and to provide meaningful results using the same. EEG signals are usually captivated to diagnose the problems related to the electrical activities of the brain as it tracks and records brain wave patterns to produce a definitive report on seizure activities of the brain. While exercising machine learning practices, various data preprocessing techniques were implemented to attain cleansed and organized data to predict better results and higher accuracy. Section II gives a comprehensive presurvey of existing work performed so far on the same; furthermore, section III sheds light on the dataset used for this research.</b></p>


2020 ◽  
Author(s):  
Tejas Wadiwala ◽  
Vikas Trikha ◽  
Jinan Fiaidhi

<p><b>This paper attempts to perform a comparative analysis of brain signals dataset using various machine learning classifiers such as random forest, gradient boosting, support vector machine, extra trees classifier. The comparative analysis is accomplished based on the performance parameters such as accuracy, area under the ROC curve (AUC), specificity, recall, and precision. The key focus of this paper is to exercise the machine learning practices over an Electroencephalogram (EEG) signals dataset provided by Rochester Institute of Technology and to provide meaningful results using the same. EEG signals are usually captivated to diagnose the problems related to the electrical activities of the brain as it tracks and records brain wave patterns to produce a definitive report on seizure activities of the brain. While exercising machine learning practices, various data preprocessing techniques were implemented to attain cleansed and organized data to predict better results and higher accuracy. Section II gives a comprehensive presurvey of existing work performed so far on the same; furthermore, section III sheds light on the dataset used for this research.</b></p>


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2019 ◽  
Author(s):  
Qian Wu ◽  
Weiling Zhao ◽  
Xiaobo Yang ◽  
Hua Tan ◽  
Lei You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document