Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-brain barrier function

2020 ◽  
Vol 89 ◽  
pp. 118-132 ◽  
Author(s):  
Fernanda Medina-Flores ◽  
Gabriela Hurtado-Alvarado ◽  
Arturo Contis-Montes de Oca ◽  
Stefanie Paola López-Cervantes ◽  
Mina Konigsberg ◽  
...  
2008 ◽  
Vol 6 (3) ◽  
pp. 179-192 ◽  
Author(s):  
Svetlana Stamatovic ◽  
Richard Keep ◽  
Anuska Andjelkovic

Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2844-2853 ◽  
Author(s):  
Su Jing Chan ◽  
Elga Esposito ◽  
Kazuhide Hayakawa ◽  
Emiri Mandaville ◽  
Raymond A.A. Smith ◽  
...  

Background and Purpose: Although VEGF 165 (vascular endothelial growth factor-165) is able to enhance both angiogenesis and neurogenesis, it also increases vascular permeability through the blood-brain barrier. Heparan sulfate (HS) sugars play important roles in regulating VEGF bioactivity in the pericellular compartment. Here we asked whether an affinity-purified VEGF 165 -binding HS (HS7) could augment endogenous VEGF activity during stroke recovery without affecting blood-brain barrier function. Methods: Both rat brain endothelial cell line 4 and primary rat neural progenitor cells were used to evaluate the potential angiogenic and neurogenic effects of HS7 in vitro. For in vivo experiments, male Sprague-Dawley rats were subjected to 100 minutes of transient focal cerebral ischemia, then treated after 4 days with either PBS or HS7. One week later, infarct volume, behavioral sequelae, immunohistochemical markers of angiogenesis and neural stem cell proliferation were assessed. Results: HS7 significantly enhanced VEGF 165 -mediated angiogenesis in rat brain endothelial cell line 4 brain endothelial cells, and increased the proliferation and differentiation of primary neural progenitor cells, both via the VEGFR2 (vascular endothelial growth factor receptor 2) pathway. Intracerebroventricular injection of HS7 improved neurological outcome in ischemic rats without changing infarct volumes. Immunostaining of the compromised cerebrum demonstrated increases in collagen IV/Ki67 and nestin/Ki67 after HS7 exposure, consistent with its ability to promote angiogenesis and neurogenesis, without compromising blood-brain barrier integrity. Conclusions: A VEGF-activating glycosaminoglycan sugar, by itself, is able to enhance endogenous VEGF 165 activity during the post-ischemic recovery phase of stroke.


2020 ◽  
Vol 12 (3) ◽  
pp. 64-79
Author(s):  
Blakely B O’Connor ◽  
Thomas Grevesse ◽  
John F Zimmerman ◽  
Herdeline Ann M Ardoña ◽  
Jorge A Jimenez ◽  
...  

Abstract The blood–brain barrier plays a critical role in delivering oxygen and nutrients to the brain while preventing the transport of neurotoxins. Predicting the ability of potential therapeutics and neurotoxicants to modulate brain barrier function remains a challenge due to limited spatial resolution and geometric constraints offered by existing in vitro models. Using soft lithography to control the shape of microvascular tissues, we predicted blood–brain barrier permeability states based on structural changes in human brain endothelial cells. We quantified morphological differences in nuclear, junction, and cytoskeletal proteins that influence, or indicate, barrier permeability. We established a correlation between brain endothelial cell pair structure and permeability by treating cell pairs and tissues with known cytoskeleton-modulating agents, including a Rho activator, a Rho inhibitor, and a cyclic adenosine monophosphate analog. Using this approach, we found that high-permeability cell pairs showed nuclear elongation, loss of junction proteins, and increased actin stress fiber formation, which were indicative of increased contractility. We measured traction forces generated by high- and low-permeability pairs, finding that higher stress at the intercellular junction contributes to barrier leakiness. We further tested the applicability of this platform to predict modulations in brain endothelial permeability by exposing cell pairs to engineered nanomaterials, including gold, silver–silica, and cerium oxide nanoparticles, thereby uncovering new insights into the mechanism of nanoparticle-mediated barrier disruption. Overall, we confirm the utility of this platform to assess the multiscale impact of pharmacological agents or environmental toxicants on blood–brain barrier integrity.


2009 ◽  
Vol 8 (11) ◽  
pp. 1803-1807 ◽  
Author(s):  
Kiem Vu ◽  
Babette Weksler ◽  
Ignacio Romero ◽  
Pierre-Olivier Couraud ◽  
Angie Gelli

ABSTRACT Cryptococcus neoformans cells must cross the blood-brain barrier prior to invading the central nervous system. Here we demonstrate that the immortalized human brain endothelial cell line HCMEC/D3 is a useful alternative to primary brain endothelial cells as a model of the blood-brain barrier for studies of central nervous system infection.


2013 ◽  
Vol 10 (3) ◽  
pp. 197-207 ◽  
Author(s):  
Beatriz Gomez-Gonzalez ◽  
Gabriela Hurtado-Alvarado ◽  
Enrique Esqueda-Leon ◽  
Rafael Santana- Miranda ◽  
Jose Rojas-Zamorano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document