Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7

2009 ◽  
Vol 379 (2) ◽  
pp. 324-329 ◽  
Author(s):  
Younghoon Kim ◽  
Sejong oh ◽  
Sae Hun Kim
1998 ◽  
Vol 36 (3) ◽  
pp. 641-647 ◽  
Author(s):  
Tong Zhao ◽  
Michael P. Doyle ◽  
Barry G. Harmon ◽  
Cathy A. Brown ◽  
P. O. Eric Mueller ◽  
...  

Bacteria inhibitory to Escherichia coli O157:H7 were isolated from cattle and evaluated for their potential for reducing carriage of E. coli O157:H7 in calves. Eighteen of 1,200 bacterial isolates from cattle feces and intestinal tissue samples were screened and determined to inhibit the growth of E. coliO157:H7 in vitro. Seventeen of the isolates were E. coli and one was Proteus mirabilis. None produced Shiga toxin. Genomic DNA fingerprinting by pulsed-field gel electrophoresis revealed 13 distinguishable profiles among the 18 isolates. Two calves inoculated perorally with a mixture of all 18 isolates (1010 CFU) appeared to be normal and did not develop signs of clinical disease throughout a 25- to 27-day observation period. These bacteria colonized segments of the gastrointestinal tract and were in feces at the termination of the experiment (25 and 27 days postinoculation) at levels of 50 to 200 CFU/g. Fifteen cannulated calves were studied to determine the efficiency of the probiotic bacteria in reducing or eliminating the carriage of E. coli O157:H7. Nine calves served as controls, with each animal receiving perorally 1010 CFU ofE. coli O157:H7. E. coliO157:H7 was detected intermittently in the rumen samples from all control animals throughout 3 weeks postinoculation, whereasE. coli O157:H7 was shed at various levels in feces continuously throughout the experiment (mean, 28 days).E. coli O157:H7 was isolated from the rumens and colons of eight of nine and nine of nine calves, respectively, at the termination of the study. Six calves each received perorally 1010 CFU of probiotic bacteria and then 2 days later received 1010 CFU of E. coli O157:H7.E. coli O157:H7 was detected in the rumen for only 9 days postinoculation in two animals, for 16 days in one animal, for 17 days in two animals, and for 29 days in one animal. E. coli O157:H7 was detected in feces for only 11 days postinoculation in one animal, for 15 days in one animal, for 17 days in one animal, for 18 days in one animal, for 19 days in one animal, and for 29 days in one animal. At the end of the experiment (mean, 30 days), E. coli O157:H7 was not recovered from the rumen of any of the six animals treated with probiotic bacteria; however, E. coli O157:H7 was recovered from the feces of one of the animals. This animal was fasted twice postinoculation. These studies indicate that selected probiotic bacteria administered to cattle prior to exposure to E. coli O157:H7 can reduce the level of carriage ofE. coli O157:H7 in most animals.


2008 ◽  
Vol 10 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Timothy J. Wells ◽  
Orla Sherlock ◽  
Lucy Rivas ◽  
Arvind Mahajan ◽  
Scott A. Beatson ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 113 ◽  
Author(s):  
Raffaella Scotti ◽  
Annarita Stringaro ◽  
Laura Nicolini ◽  
Miriam Zanellato ◽  
Priscilla Boccia ◽  
...  

Every year, the pharmaceutical and food industries produce over 1000 tons of essential oils (EOs) exploitable in different fields as the development of eco-friendly and safe antimicrobial inhibitors. In this work we investigated the potential of some EOs, namely Cinnamomum verum, Cymbopogon martini, Cymbopogoncitratus and Cymbopogon flexuosus, on the growth, biofilm formation and gene expression in four strains of enterohemorrhagic Escherichia coli O157:H7. All EOs were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity was performed by using dilutions of EOs ranging from 0.001 to 1.2% (v/v). Subinhibitory doses were used for biofilm inhibition assay. The expression profiles were obtained by RT-PCR. E. coli O157:H7 virulence was evaluated in vivo in the nematode Caenorhabditis elegans. All EOs showed minimal inhibitory concentrations (MICs) ranging from 0.0075 to 0.3% (v/v). Cinnamomum verum bark EO had the best activity (MIC of 0.0075% (v/v) in all strains) while the C. verum leaf EO had an intermediate efficacy with MIC of 0.175% (v/v) in almost all strains. The Cymbopogon spp. showed the more variable MICs (ranging from 0.075 to 0.3% (v/v)) depending on the strain used. Transcriptional analysis showed that C. martini EO repressed several genes involved in biofilm formation, virulence, zinc homeostasis and encoding some membrane proteins. All EOs affected zinc homeostasis, reducing ykgM and zinT expression, and reduced the ability of E. coli O157:H7 to infect the nematode C. elegans. In conclusion, we demonstrated that these EOs, affecting E. coli O157:H7 infectivity, have a great potential to be used against infections caused by microorganisms.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208520 ◽  
Author(s):  
Wanderson Marques Da Silva ◽  
Jinlong Bei ◽  
Natalia Amigo ◽  
María Pía Valacco ◽  
Ariel Amadio ◽  
...  

1998 ◽  
Vol 72 (2) ◽  
pp. 89-96
Author(s):  
Sou-ichi MAKINO ◽  
Hiroshi ASAKURA ◽  
Toshikazu SHIRAHATA ◽  
Tetsuya IKEDA ◽  
Koichi TAKESHI ◽  
...  

2012 ◽  
Vol 423 (4) ◽  
pp. 789-792 ◽  
Author(s):  
Jong Chul Kim ◽  
Jang W. Yoon ◽  
Cheorl-Ho Kim ◽  
Mi-Sun Park ◽  
Seung-Hak Cho

2000 ◽  
Vol 97 (7) ◽  
pp. 2999-3003 ◽  
Author(s):  
R. O. Elder ◽  
J. E. Keen ◽  
G. R. Siragusa ◽  
G. A. Barkocy-Gallagher ◽  
M. Koohmaraie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document