The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

2010 ◽  
Vol 403 (3-4) ◽  
pp. 270-274 ◽  
Author(s):  
Pedro M. Matos ◽  
Teresa Freitas ◽  
Miguel A.R.B. Castanho ◽  
Nuno C. Santos
2012 ◽  
Vol 9 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Seyed Mohammad Nabavi ◽  
Seyed Fazel Nabavi ◽  
William N. Setzer ◽  
Heshmatollah Alinezhad ◽  
Mahboobeh Zare ◽  
...  

2008 ◽  
Vol 74 (12) ◽  
pp. 3764-3773 ◽  
Author(s):  
Dina Raafat ◽  
Kristine von Bargen ◽  
Albert Haas ◽  
Hans-Georg Sahl

ABSTRACT Chitosan is a polysaccharide biopolymer that combines a unique set of versatile physicochemical and biological characteristics which allow for a wide range of applications. Although its antimicrobial activity is well documented, its mode of action has hitherto remained only vaguely defined. In this work we investigated the antimicrobial mode of action of chitosan using a combination of approaches, including in vitro assays, killing kinetics, cellular leakage measurements, membrane potential estimations, and electron microscopy, in addition to transcriptional response analysis. Chitosan, whose antimicrobial activity was influenced by several factors, exhibited a dose-dependent growth-inhibitory effect. A simultaneous permeabilization of the cell membrane to small cellular components, coupled to a significant membrane depolarization, was detected. A concomitant interference with cell wall biosynthesis was not observed. Chitosan treatment of Staphylococcus simulans 22 cells did not give rise to cell wall lysis; the cell membrane also remained intact. Analysis of transcriptional response data revealed that chitosan treatment leads to multiple changes in the expression profiles of Staphylococcus aureus SG511 genes involved in the regulation of stress and autolysis, as well as genes associated with energy metabolism. Finally, a possible mechanism for chitosan's activity is postulated. Although we contend that there might not be a single classical target that would explain chitosan's antimicrobial action, we speculate that binding of chitosan to teichoic acids, coupled with a potential extraction of membrane lipids (predominantly lipoteichoic acid) results in a sequence of events, ultimately leading to bacterial death.


1981 ◽  
Vol 36 (11-12) ◽  
pp. 988-996 ◽  
Author(s):  
Dietmar Dorn-Zachertz ◽  
Guido Zimmer

Abstract 1-anilino-naphthalene-8 -sulfonate (ANS) fluorescence measurements have revealed that red blood cell membrane of the Rhnull type undergoes a transition at about 16 °C. In contrast, viscosity measurements of the extracted membrane lipids showed the usually observed transition at about 18 °C. Lower values of titratable sulfhydryl (SH) groups were observed in Rhnull membrane using 5,5′-dithiobis-(2-nitro-benzoic-acid) (Nbs2). In contrast, disulfide bonds in Rhnull membrane were estimated to be about 3 times the value of the controls. Spin labeling experiments using 2-(3-carboxypropyl)-4, 4 dimethyl-2-tridecyl 3-oxazolidinyl-oxyl were carried out with phospholipase A2 modified membranes. The mobile part of the spectra was significantly increased on the Rhnull membrane. In the presence of ᴅ-glucose, infrared spectrometry showed a larger reduction of the intensity of the POO-band in Rhnull membrane. In contrast to controls, binding of the reagent diethylpyrocarbonate resulted in no significant changes of the Rhnull membrane as determined by electron spin resonance (ESR) measurements. ᴅ-glucose transport activity was found to be at the upper level of a group of Rh positive and Rh negative persons. It is suggested that the intensity of the polar protein-lipid interaction is reduced in Rhnull membrane.


2016 ◽  
Vol 4 (23) ◽  
pp. 4191-4197 ◽  
Author(s):  
Xi Guo ◽  
Yanwen Zhang ◽  
Jianbo Liu ◽  
Xiaohai Yang ◽  
Jin Huang ◽  
...  

A biomimetic route to fusion of hydrophobic quantum dots (QDs) with living cells for membrane imaging was proposed. Red blood cell membrane lipids acted as both an efficient surfactant to phase-transfer QDs and a fusion reagent to facilitate fusion with cell membranes.


2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Xiaoran Tang ◽  
Hongliang Jin ◽  
Yue Chen ◽  
Li Li ◽  
Yuanmei Zhu ◽  
...  

ABSTRACT Emerging studies demonstrate that the antiviral activity of viral fusion inhibitor peptides can be dramatically improved when being chemically or genetically anchored to the cell membrane, where viral entry occurs. We previously reported that the short-peptide fusion inhibitor 2P23 and its lipid derivative possess highly potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). To develop a sterilizing or functional-cure strategy, here we genetically linked 2P23 and two control peptides (HIV-1 fusion inhibitor C34 and hepatitis B virus [HBV] entry inhibitor 4B10) with a glycosylphosphatidylinositol (GPI) attachment signal. As expected, GPI-anchored inhibitors were efficiently expressed on the plasma membrane of transduced TZM-bl cells and primarily directed to the lipid raft site without interfering with the expression of CD4, CCR5, and CXCR4. GPI-anchored 2P23 (GPI-2P23) completely protected TZM-bl cells from infections of divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide (T20)-resistant mutants. GPI-2P23 also rendered the cells resistant to viral envelope-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission. Moreover, GPI-2P23-modified human CD4+ T cells (CEMss-CCR5) fully blocked both R5- and X4-tropic HIV-1 isolates and displayed a robust survival advantage over unmodified cells during HIV-1 infection. In contrast, it was found that GPI-anchored C34 was much less effective in inhibiting HIV-2, SIV, and T20-resistant HIV-1 mutants. Therefore, our studies have demonstrated that genetically anchoring a short-peptide fusion inhibitor to the target cell membrane is a viable strategy for gene therapy of both HIV-1 and HIV-2 infections. IMPORTANCE Antiretroviral therapy with multiple drugs in combination can efficiently suppress HIV replication and dramatically reduce the morbidity and mortality associated with AIDS-related illness; however, antiretroviral therapy cannot eradiate the HIV reservoirs, and lifelong treatment is required, which often results in cumulative toxicities, drug resistance, and a multitude of complications, thus necessitating the development of sterilizing-cure or functional-cure strategies. Here, we report that genetically anchoring the short-peptide fusion inhibitor 2P23 to the cell membrane can fully prevent infections from divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide-resistant mutants. Membrane-bound 2P23 also effectively blocks HIV-1 Env-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission, renders CD4+ T cells nonpermissive to infection, and confers a robust survival advantage over unmodified cells. Thus, our studies verify a powerful strategy to generate resistant cells for gene therapy of both the HIV-1 and HIV-2 infections.


Sign in / Sign up

Export Citation Format

Share Document