UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

2012 ◽  
Vol 417 (1) ◽  
pp. 495-500 ◽  
Author(s):  
Louise T. Dalgaard
Diabetes ◽  
1981 ◽  
Vol 30 (11) ◽  
pp. 911-922 ◽  
Author(s):  
M. D. Trus ◽  
W. S. Zawalich ◽  
P. T. Burch ◽  
D. K. Berner ◽  
V. A. Weill ◽  
...  

Diabetes ◽  
1988 ◽  
Vol 37 (9) ◽  
pp. 1226-1233 ◽  
Author(s):  
B. Portha ◽  
M. H. Giroix ◽  
P. Serradas ◽  
N. Welsh ◽  
C. Hellerstrom ◽  
...  

1974 ◽  
Vol 140 (3) ◽  
pp. 423-433 ◽  
Author(s):  
Carl J. Hedeskov ◽  
Kirsten Capito

1. Rates of insulin secretion, glucose utilization, lactate output, incorporation of glucose into glycogen, contents of glucose 6-phosphate, fructose 1,6-diphosphate and ATP, and maximally extractable enzyme activities of hexokinase, high-Km glucose-phosphorylating activity (`glucokinase'), glucose 6-phosphatase and unspecific acid phosphatase were measured in isolated pancreatic islets from fed and 48-h-starved mice. 2. In the fed state insulin secretion from isolated islets was increased five- to six-fold when the extracellular glucose concentration was raised from 2.5mm to 16.7mm; 5mm-caffeine potentiated this effect. The secretory response to glucose of islets from mice starved for 48h was diminished at all glucose concentrations from 2.5mm up to approx. 40mm. Very high glucose concentrations (60mm and above) restored the secretory response to that found in the fed state, suggesting that the Km value for the overall secretory process had been increased (approx. fourfold) by starvation. Addition of 5mm-caffeine to islets from starved mice also restored the insulin secretory response to 2.5–16.7mm-glucose to normal values. 3. Extractable hexokinase, `glucokinase', glucose 6-phosphatase and unspecific phosphatase activities were not changed by starvation. 4. Glucose utilization and glycolysis (measured as the rate of formation of 3H2O from [5-3H]glucose over a 2h period) was decreased in islets from starved mice at all glucose concentrations up to approx. 55mm. At still higher glucose concentrations up to approx. 100mm, there was no difference between the fed and starved state, suggesting that the Km value for the rate-limiting glucose phosphorylation had been increased (approx. twofold) by starvation. Preparation of islets omitting substrates (glucose, pyruvate, fumarate and glutamate) from the medium during collagenase treatment lowered the glucose utilization measured subsequently at 16.7mm-glucose by 38 and 30% in islets from fed and starved mice respectively. Also the 2h lactate output by the islets at 16.7mm extracellular glucose was diminished by starvation. Incorporation of glucose into glycogen was extremely low, but the rate of incorporation was more than doubled by starvation. 5. After incubation for 30min at 16.7mm-glucose the content of glucose 6-phosphate was unchanged by starvation, that of ATP was increased and the concentration of (fructose 1,6-diphosphate plus triose phosphates) was decreased. 6. Possible mechanisms behind the correlated impairment in insulin secretion and islet glucose metabolism during starvation are discussed.


2007 ◽  
Vol 193 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Anthony J Weinhaus ◽  
Laurence E Stout ◽  
Nicholas V Bhagroo ◽  
T Clark Brelje ◽  
Robert L Sorenson

Glucokinase activity is increased in pancreatic islets during pregnancy and in vitro by prolactin (PRL). The underlying mechanisms that lead to increased glucokinase have not been resolved. Since glucose itself regulates glucokinase activity in β-cells, it was unclear whether the lactogen effects are direct or occur through changes in glucose metabolism. To clarify the roles of glucose metabolism in this process, we examined the interactions between glucose and PRL on glucose metabolism, insulin secretion, and glucokinase expression in insulin 1 (INS-1) cells and rat islets. Although the PRL-induced changes were more pronounced after culture at higher glucose concentrations, an increase in glucose metabolism, insulin secretion, and glucokinase expression occurred even in the absence of glucose. The presence of comparable levels of insulin secretion at similar rates of glucose metabolism from both control and PRL-treated INS-1 cells suggests the PRL-induced increase in glucose metabolism is responsible for the increase in insulin secretion. Similarly, increases in other known PRL responsive genes (e.g. the PRL receptor, glucose transporter-2, and insulin) were also detected after culture without glucose. We show that the upstream glucokinase promoter contains multiple STAT5 binding sequences with increased binding in response to PRL. Corresponding increases in glucokinase mRNA and protein synthesis were also detected. This suggests the PRL-induced increase in glucokinase mRNA and its translation are sufficient to account for the elevated glucokinase activity in β-cells with lactogens. Importantly, the increase in islet glucokinase observed with PRL is in line with that observed in islets during pregnancy.


2012 ◽  
Vol 208 (8) ◽  
pp. 480-488 ◽  
Author(s):  
Rômulo D. Novaes ◽  
Reggiani V. Gonçalves ◽  
Arlete R. Penitente ◽  
André Talvani ◽  
Clóvis A. Neves ◽  
...  

Diabetes ◽  
1988 ◽  
Vol 37 (9) ◽  
pp. 1226-1233 ◽  
Author(s):  
B. Portha ◽  
M.-H. Giroix ◽  
P. Serradas ◽  
N. Welsh ◽  
C. Hellerstrom ◽  
...  

Diabetologia ◽  
1992 ◽  
Vol 35 (10) ◽  
pp. 924-931 ◽  
Author(s):  
E. Strandell ◽  
S. Sandler ◽  
C. Boitard ◽  
D. L. Eizirik

2020 ◽  
Vol 8 (1) ◽  
pp. e000942
Author(s):  
Mouna El-Mehdi ◽  
Saloua Takhlidjt ◽  
Fayrouz Khiar ◽  
Gaëtan Prévost ◽  
Jean-Luc do Rego ◽  
...  

Introduction26RFa (pyroglutamyl RFamide peptide (QRFP)) is a biologically active peptide that has been found to control feeding behavior by stimulating food intake, and to regulate glucose homeostasis by acting as an incretin. The aim of the present study was thus to investigate the impact of 26RFa gene knockout on the regulation of energy and glucose metabolism.Research design and methods26RFa mutant mice were generated by homologous recombination, in which the entire coding region of prepro26RFa was replaced by the iCre sequence. Energy and glucose metabolism was evaluated through measurement of complementary parameters. Morphological and physiological alterations of the pancreatic islets were also investigated.ResultsOur data do not reveal significant alteration of energy metabolism in the 26RFa-deficient mice except the occurrence of an increased basal metabolic rate. By contrast, 26RFa mutant mice exhibited an altered glycemic phenotype with an increased hyperglycemia after a glucose challenge associated with an impaired insulin production, and an elevated hepatic glucose production. Two-dimensional and three-dimensional immunohistochemical experiments indicate that the insulin content of pancreatic β cells is much lower in the 26RFa−/− mice as compared with the wild-type littermates.ConclusionDisruption of the 26RFa gene induces substantial alteration in the regulation of glucose homeostasis, with in particular a deficit in insulin production by the pancreatic islets. These findings further support the notion that 26RFa is an important regulator of glucose homeostasis.


Sign in / Sign up

Export Citation Format

Share Document