ucp2 mrna
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Sara Moradi ◽  
Mohamadreza Alivand ◽  
Yaser KhajeBishak ◽  
Mohamad AsghariJafarabadi ◽  
Maedeh Alipour ◽  
...  

Abstract Background Omega3 fatty acids as a ligand of energy-related genes, have a role in metabolism, and energy expenditure. These effects are due to changes in the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and uncoupling protein2 (UCP2). This study evaluated the effect of omega3 supplements on PPARγ mRNA expression and UCP2 mRNA expression and protein levels, as regulators of energy metabolism, resting energy expenditure (REE), and appetite in athletes. Methods In a 3-week double-blind RCT in Tabriz, Iran, in 2019, 36 male athletes, age 21.86 (±3.15) y with 16.17 (±5.96)% body fat were randomized to either an intervention (2000 mg/day omega3; EPA: 360, DHA: 240) or placebo (2000 mg/day edible paraffin) groups. Appetite and REE were assessed before and after the intervention. PPARγ and UCP2 mRNA expression and UCP2 protein levels in blood were evaluated by standard methods. Results Results showed PPARγ mRNA levels, and UCP2 mRNA and protein levels increased in omega3 group (p < 0.05), as did REE (p < 0.05). Also, differences in the sensation of hunger or satiety were significant (p < 0.05). Conclusions Our findings showed that omega3 supplementation leads to the up-regulation of PPARγ and UCP2 expressions as the indicators of metabolism in healthy athletes.


2020 ◽  
Author(s):  
Dae Yeon Kim ◽  
Bae Dong Jung ◽  
Hee Tae Cheong ◽  
Chang Six Ra ◽  
Kazuhiro Kimura

Abstract Background: The function of the uncoupling protein 2 (UCP2) is different for each cancer cell, and the mechanism of production is unclear. DNA methylation affects protein expression and is one factor that transforms normal cells into cancer cells. The hepatocellular carcinoma Hep3B and HepG2 cells and colorectal cancer HT-29 cells were treated with 5-azacytidine (5-aza), a DNA demethylation agent, to observe the modification of UCP2 production and the methylation degree in the UCP2 promoter region.Methods: Promoter basal activity and degree of UCP2 production were measured in Hep3B, HepG2, and HT-29 cells. In addition, methylation-specific PCR (MSP) was performed to investigate the degree of methylation in the UCP2 promoter region. The methylation region in the UCP2 promoter was confirmed based on bisulfite sequencing.Results: In Hep3B cells in which UCP2 mRNA was not transcribed, the promoter basal activity was significantly higher than in HT-29 or HepG2 cells in which UCP2 mRNA was transcribed. Treatment with 5-aza increased UCP2 expression in Hep3B and HT-29 cells; however, the expression in HepG2 cells was unchanged. The UCP2 promoter in Hep3B cells has numerous methylated regions compared with HT-29 and HepG2 cells.Conclusion: The results of the present study revealed that inhibition of UCP2 production in Hep3B cells was due to multiple methylation of the promoter region. Investigating the mechanism that induces UCP2 production in cancer cells is important to understand the function of UCP2, which could aid in cancer treatment.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Babu R. Maharjan ◽  
Susan V. McLennan ◽  
Stephen M. Twigg ◽  
Paul F. Williams

Abstract Transforming growth factor β (TGFβ) a multifunctional cytokine is known to regulate cell proliferation, differentiation, migration and survival. Although there is variable expression of modulators of TGFβ action during differentiation, a differential effect on fat cell metabolism at the different stages of adipocyte differentiation was unclear. In the present study, 3T3L1 cells were used as an in vitro model to study the effect of TGFβ on adipogenic and thermogenic markers at various stages of preadipocyte to mature adipocyte differentiation. As in our earlier studies on the effect of TGFβ on CEBP’s, we used a standard differentiation mix, and one with the addition of rosiglitazone. RhTGFβ1 was added to undifferentiated adipocytes (preadipocytes) and to adipocytes at day 0 (commitment stage) as well as day 10 (terminal differentiation). Cellular responses in terms of Pref1, PPARγ, TLE3, PGC1α, PRDM16, UCP1 and UCP2 mRNA levels and selected protein products, were determined. Increases in PPARγ, PRDM16, UCP1 and UCP2 mRNA and decreases in Pref1 are good indicators of successful differentiation. The early addition of rhTGFβ1 during commitment stage decreased PPARγ, PRDM16, TLE3, UCP1 and UCP2 mRNA and decreased PRDM16 protein consistent with our earlier report on the inhibition of CEBP’s by TGFβ and CCN2. The addition of rhTGFβ1 to mature adipocyte at day 10 increased UCP1 mRNA and increased PRDM16 and UCP1 proteins. In the present study, our results suggest that TGFβ1 added late enhances the thermogenic potential of mature cells and causes 3T3L1 cells to differentiate to resemble brown or beige rather than white adipose tissue.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Sona Margaryan ◽  
Agata Witkowicz ◽  
Anna Partyka ◽  
Levon Yepiskoposyan ◽  
Gayane Manukyan ◽  
...  

Introduction: Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose major hallmark is insulin resistance. Impaired mitochondrial activity, such as reduced ratio of energy production to respiration, has been implicated in the development of insulin resistance. Uncoupling proteins (UCPs) are proton carriers, expressed in the mitochondrial inner membrane, that uncouple oxygen consumption by the respiratory chain from ATP synthesis. Aim: The aim of the study was to determine transcriptional levels of UCP1 and UCP2 in peripheral blood mononuclear cells (PBMCs) from patients with metabolic disorders: T2DM, obesity and from healthy individuals. Material/Methods: The mRNA levels of UCP1, UCP2 were determined by Real-Time PCR method using Applied Biosystems assays. Results: The UCP1 mRNA expression level was not detectable in the majority of studied samples, while very low expression was found in PBMCs from 3 obese persons. UCP2 mRNA expression level was detectable in all samples. The median mRNA expression of UCP2 was lower in all patients with metabolic disorders as compared to the controls (0.20+0.14 vs. 0.010+0.009, p=0.05). When compared separately, the differences of medians UCP2 mRNA expression level between the obese individuals and the controls as well as between the T2DM patients and the controls did not reach statistical significance. Conclusions: Decreased UCP2 gene expression in mononuclear cells from obese and diabetic patients might contribute to the immunological abnormalities in these metabolic disorders and suggests its role as a candidate gene in future studies of obesity and diabetes.


2013 ◽  
Vol 305 (7) ◽  
pp. E879-E889 ◽  
Author(s):  
Britt Christensen ◽  
Birgitte Nellemann ◽  
Mads S. Larsen ◽  
Line Thams ◽  
Peter Sieljacks ◽  
...  

Erythropoietin (Epo) administration improves aerobic exercise capacity and insulin sensitivity in renal patients and also increases resting energy expenditure (REE). Similar effects are observed in response to endurance training. The aim was to compare the effects of endurance training with erythropoiesis-stimulating agent (ESA) treatment in healthy humans. Thirty-six healthy untrained men were randomized to 10 wk of either: 1) placebo ( n = 9), 2) ESA ( n = 9), 3) endurance training ( n = 10), or 4) ESA and endurance training ( n = 8). In a single-blinded design, ESA/placebo was injected one time weekly. Training consisted of biking for 1 h at 65% of wattmax three times per week. Measurements performed before and after the intervention were as follows: body composition, maximal oxygen uptake, insulin sensitivity, REE, and palmitate turnover. Uncoupling protein 2 (UCP2) mRNA levels were assessed in skeletal muscle. Fat mass decreased after training ( P = 0.003), whereas ESA induced a small but significant increase in intrahepatic fat ( P = 0.025). Serum free fatty acid (FFA) levels and palmitate turnover decreased significantly in response to training, whereas the opposite pattern was found after ESA. REE corrected for lean body mass increased in response to ESA and training, and muscle UCP2 mRNA levels increased after ESA ( P = 0.035). Insulin sensitivity increased only after training ( P = 0.011). In conclusion: 1) insulin sensitivity is not improved after ESA treatment despite improved exercise capacity, 2) the calorigenic effects of ESA may be related to increased UCP2 gene expression in skeletal muscle, and 3) training and ESA exert opposite effects on lipolysis under basal conditions, increased FFA levels and liver fat fraction was observed after ESA treatment.


Endocrinology ◽  
2010 ◽  
Vol 151 (5) ◽  
pp. 2078-2086 ◽  
Author(s):  
Zane B. Andrews ◽  
Derek M. Erion ◽  
Rudolph Beiler ◽  
Charles S. Choi ◽  
Gerald I. Shulman ◽  
...  

The exact mechanisms through which ghrelin promotes lipogenesis are unknown. Uncoupling protein (UCP)-2 is a mitochondrial protein important in regulating reactive oxygen species; however, recent research shows that it may play an important role fat metabolism. Given that ghrelin increases UCP2 mRNA in white adipose tissue, we examined whether the lipogenic actions of ghrelin are modulated by UCP2 using ucp2+/+ and ucp2−/− mice. Chronic ghrelin treatment either via osmotic minipumps or daily ip injections induced body weight gain in both ucp2+/+ and ucp2−/− mice; however, body weight gain was potentiated in ucp2−/− mice. Increased body weight gain was completely due to increased body fat as a result of decreased fat oxidation in ucp2−/− mice. Ghrelin treatment of ucp2−/− mice resulted in a gene expression profile favoring lipogenesis. In a calorie-restriction model of negative energy balance, ghrelin to ucp2+/+ mice did not increase body weight; however, ghrelin to ucp2−/− mice still induced body weight. These results show that UCP2 plays an important role in fat metabolism by promoting fat oxidation and restricts ghrelin-induced lipogenesis.


Reproduction ◽  
2007 ◽  
Vol 134 (4) ◽  
pp. 615-623 ◽  
Author(s):  
M G Gnanalingham ◽  
P Williams ◽  
V Wilson ◽  
J Bispham ◽  
M A Hyatt ◽  
...  

In sheep, modest maternal nutrient restriction (NR) over the period of rapid placental growth restricts placentome growth and results in offspring in which glucocorticoid action is enhanced. Therefore, this study investigated the placental effects of early to mid-gestational NR on glucocorticoid receptor (GR), 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), uncoupling protein-2 (UCP2), and IGF type-I receptor (IGF-IR) mRNA abundance together with cell proliferation and apoptosis as determined histologically, and the mitochondrial proteins voltage-dependent anion channel and cytochrome c that are involved in apoptosis. Placenta was sampled at 80 and 140 days gestation (dGA; term ~147 dGA). NR was imposed between 28 and 80 days gestation when control and nutrient-restricted groups consumed 150 or 60% respectively of their total metabolizable energy requirements. All mothers were then fed to requirements up to term. Total fetal placentome weights were decreased by NR at 80 dGA but were heavier at 140 dGA following 60 days of nutritional rehabilitation. GR and UCP2 mRNA abundance increased whilst 11βHSD2 mRNA decreased with gestational age. NR persistently up-regulated GR and UCP2 mRNA abundance. 11βHSD2 mRNA was reduced by NR at 80 dGA but increased near to term. IGF-IRmRNA abundance was only decreased at 80 dGA. Placental apoptosis and mitochondrial protein abundance were unaffected by NR, whereas cell proliferation was markedly reduced. In conclusion, placental UCP2 and local glucocorticoid action are affected by the gestational nutritional status and may result in the offspring showing enhanced glucocorticoid sensitivity, thereby predisposing them to disease in later life.


2006 ◽  
Vol 72 (9) ◽  
pp. 764-772 ◽  
Author(s):  
Ronald E. Reyna ◽  
Mark E. Feldmann ◽  
Zachary P. Evans ◽  
O. Seung-Jun ◽  
Kenneth D. Chavin

Obesity presents a risk factor for flap-related complications in autologous tissue breast reconstruction. In this study, an animal model was developed to examine this phenomenon. Abdominal flaps based on a superficial inferior epigastric pedicle were elevated in an experimental group of obese Zucker (fa/fa) rats (n = 8; mean weight, 413 g) and in their lean littermates (n = 9; mean weight, 276 g). Flap tissue was harvested from a subset of both groups for baseline characterization, including histology, and assays for ATP and oxidative phosphorylation uncoupler, UCP-2. Flaps were then evaluated for survival by planimetry at 4 and 7 days postprocedure. Flap survival 7 days postoperatively was reduced in obese (42.0% ± 8.6%) versus lean (70.3% ± 6.7%) rats ( P < 0.05). At baseline, flap tissue of obese animals had decreased ATP content relative to lean counterparts (0.12 ± 0.12 nM/μg vs 0.36 ± 0.23 nM/μg protein, P < 0.05), whereas UCP2 mRNA was higher in obese flap tissue versus lean. Reduced viability of obese flaps may be attributable to decreased baseline energy stores due to oxidative phosphorylation uncoupling by UCP-2. This study is the first to introduce a promising animal model for examining the effect of obesity on increased flap-related complications in breast reconstruction using autologous tissue.


2004 ◽  
Vol 183 (1) ◽  
pp. 121-131 ◽  
Author(s):  
A Mostyn ◽  
J C Litten ◽  
K S Perkins ◽  
M C Alves-Guerra ◽  
C Pecqueur ◽  
...  

The present study aimed to determine whether porcine genotype and/or postnatal age influenced mRNA abundance or protein expression of uncoupling protein (UCP)2 or 3 in subcutaneous adipose tissue (AT) and skeletal muscle (SM) and the extent to which these differences are associated with breed-specific discordance in endocrine and metabolic profiles. Piglets from commercial and Meishan litters were ranked according to birth weight. Tissue samples were obtained from the three median piglets from each litter on either day 0, 4, 7, 14 or 21 of neonatal life. UCP2 protein abundance in AT was similar between genotypes on the first day of life, but it was elevated at all subsequent postnatal ages (P<0.05) in AT of Meishan piglets. In contrast, UCP2 mRNA abundance was lower in Meishans up to 14 days of age. UCP2 mRNA expression was not correlated with protein abundance in either breed at any age. UCP3 mRNA in AT was similar between breeds up to day 7; thereafter, expression was higher (general linear model, P<0.05) in Meishan piglets. Conversely, UCP3 mRNA expression in SM was higher in commercial piglets after day 7. Colonic temperature remained lower in Meishan than commercial piglets throughout the study; this was most obvious in the immediate post-partum period when Meishan piglets had lower (P<0.05) plasma triiodothyronine. In conclusion, we have demonstrated that porcine genotype influences the expression and abundance of UCP2 and 3, an influence which may, in part, be due to the distinctive endocrine profiles associated with each genotype.


Sign in / Sign up

Export Citation Format

Share Document