Identification of cathepsin B as a novel target of hypoxia-inducible factor-1-alpha in HepG2 cells

2018 ◽  
Vol 503 (2) ◽  
pp. 1057-1062 ◽  
Author(s):  
Cheng Xiaofei ◽  
Li Yanqing ◽  
Zhou Dongkai ◽  
Chen Dong ◽  
Zhao Feng ◽  
...  
2005 ◽  
Vol 93 (06) ◽  
pp. 1176-1184 ◽  
Author(s):  
Ulrike Möller ◽  
Stephan Herzig ◽  
Trine Fink ◽  
Vladimir Zachar ◽  
Peter Ebbesen ◽  
...  

SummaryInsulin-like growth factor 1 (IGF-1) and plasminogen activator inhibitor-1 (PAI-1) appear to play a crucial role in a number of processes associated with growth and tissue remodelling. IGF-1 was shown to enhance PAI-1 expression in primary hepatocytes and HepG2 hepatoma cells, but the molecular mechanisms underlying this effect have not been fully elucidated. In this study, we investigated the transcriptional mechanism and the signaling pathway by which IGF-1 mediates induction of PAI-1 expression in HepG2 cells. By using human PAI-1 promoter reporter gene assays we found that mutation of the hypoxia responsive element (HRE), which could bind hypoxia-inducible factor-1 (HIF-1), nearly abolished the induction by IGF-1. We found that IGF-1-induced up-regulation of PAI-1 expression was associated with activation of HIF-1α. Furthermore, IGF-1 enhanced HIF-1α protein levels and HIF-1 DNA-binding to each HRE, E4 and E5 as shown by EMSA. Mutation of the E-boxes, E4 and E5, did not affect the IGF-1-dependent induction of PAI-1 promoter constructs under normoxia but abolished the effect of IGF-1 under hypoxia. Inhibition of either the PI3K by LY294002 or ERK1/2 by U0126 reduced HIF-1α protein levels while both inhibitors together completely abolished the IGF-1 effect on HIF-1α. Remarkably, transfection of HepG2 cells with vectors expressing a dominant-negative PDK1 or the PKB inhibitor, TRB3, did not influence while dominant-negative Raf inhibited the IGF-1 effect on HIF-1α. Thus, IGF-1 activates human PAI-1 gene expression through activation of the PI3-kinase and ERK1/2 via HIF-1α.


2016 ◽  
Vol 44 (05) ◽  
pp. 997-1008 ◽  
Author(s):  
Feifei Ma ◽  
Lijuan Hu ◽  
Ming Yu ◽  
Feng Wang

Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text] dimeric transcription factor. Because HIF-1[Formula: see text] is instable with oxygen, HIF-1 is scarce in normal mammalian cells. However, HIF-1[Formula: see text] is expressed in pathological conditions such as cancer and obesity. Inhibiting HIF-1[Formula: see text] may be of therapeutic value for these pathologies. Here, we investigated whether emodin, derived from the herb of Rheum palmatum L, which is also known as Chinese rhubarb, and is native to China, regulates HIF-1[Formula: see text] expression. Male C57BL/6 mice without or with diet-induced obesity were treated with emodin for two weeks, while control mice were treated with vehicle. HIF-1[Formula: see text] expression was determined by Western blot. We found that emodin inhibited obesity-induced HIF-1[Formula: see text] expression in liver and skeletal muscle but did not regulate HIF-1[Formula: see text] expression in the kidneys or in intra-abdominal fat. In vitro, emodin inhibited HIF-1[Formula: see text] expression in human HepG2 hepatic cells and Y1 adrenocortical cells. Further, we investigated the mechanisms of HIF-1[Formula: see text] expression in emodin-treated HepG2 cells. First, we found that HIF-1[Formula: see text] had normal stability in the presence of emodin. Thus, emodin did not decrease HIF-1[Formula: see text] by stimulating its degradation. Importantly, emodin decreased the activity of the signaling pathways that led to HIF-1[Formula: see text] biosynthesis. Interestingly, emodin increased HIF-1[Formula: see text] mRNA in HepG2 cells. This may be a result of feedback in response to the emodin-induced decrease in the protein of HIF-1[Formula: see text]. In conclusion, emodin decreases hepatic HIF-1[Formula: see text] by inhibiting its biosynthesis.


2005 ◽  
Vol 16 (9) ◽  
pp. 901-909 ◽  
Author(s):  
Vladimir E. Belozerov ◽  
Erwin G. Van Meir

2021 ◽  
Vol 22 (16) ◽  
pp. 8596
Author(s):  
Ji Young Kim ◽  
Eun Jung Lee ◽  
Yuri Ahn ◽  
Sujin Park ◽  
Yu Jeong Bae ◽  
...  

Hypoxic conditions induce the activation of hypoxia-inducible factor-1α (HIF-1α) to restore the supply of oxygen to tissues and cells. Activated HIF-1α translocates into the nucleus and binds to hypoxia response elements to promote the transcription of target genes. Cathepsin L (CTSL) is a lysosomal protease that degrades cellular proteins via the endolysosomal pathway. In this study, we attempted to determine if CTSL is a hypoxia responsive target gene of HIF-1α, and decipher its role in melanocytes in association with the autophagic pathway. The results of our luciferase reporter assay showed that the expression of CTSL is transcriptionally activated through the binding of HIF1-α at its promoter. Under autophagy-inducing starvation conditions, HIF-1α and CTSL expression is highly upregulated in melan-a cells. The mature form of CTSL is closely involved in melanosome degradation through lysosomal activity upon autophagosome–lysosome fusion. The inhibition of conversion of pro-CTSL to mature CTSL leads to the accumulation of gp100 and tyrosinase in addition to microtubule-associated protein 1 light chain 3 (LC3) II, due to decreased lysosomal activity in the autophagic pathway. In conclusion, we have identified that CTSL, a novel target of HIF-1α, participates in melanosome degradation in melanocytes through lysosomal activity during autophagosome–lysosome fusion.


Stroke ◽  
2011 ◽  
Vol 42 (3) ◽  
pp. 754-763 ◽  
Author(s):  
Valeria Valsecchi ◽  
Giuseppe Pignataro ◽  
Annalisa Del Prete ◽  
Rossana Sirabella ◽  
Carmela Matrone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document