human hepatoma hepg2 cells
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 34)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 14 (12) ◽  
pp. 1310
Author(s):  
Meng-Hsun Yu ◽  
Ming-Chang Tsai ◽  
Chi-Chih Wang ◽  
Sheng-Wen Wu ◽  
Ya-Ju Chang ◽  
...  

The edible leaves of the mulberry (Morus alba L.) plant are used worldwide. They contain abundant polyphenolic compounds with strong anticancer properties. We previously revealed that apoptosis was mediated in p53-negative Hep3B cells, and mulberry leaf polyphenol extract (MLPE) induced autophagy in p53-transfected Hep3B cells. However, how this autophagy is induced by p53 in human hepatoma HepG2 (p53 wild type) cells remains unclear. In the current study, MLPE induced autophagy, as demonstrated by enhanced acidic vesicular organelle staining, by upregulating beclin-1, increasing LC3-II conversion, and phosphorylating AMPK. In HepG2 cells, these processes were associated with p53. Western blot also revealed phosphatidylinositol-3 kinase (PI3K), p-AKT, and fatty acid synthase (FASN) suppression in MLPE-treated cells. Moreover, treatment with the p53 inhibitor pifithrin-α (PFT-α) inhibited autophagy and increased apoptotic response in MLPE-treated HepG2 cells. PFT-α treatment also reversed MLPE-induced PI3K, p-AKT, and FASN suppression. Thus, co-treatment with MLPE and PFT-α significantly increased caspase-3, caspase-8, and cytochrome c release, indicating that p53 deficiency caused the apoptosis. In addition, rutin, a bioactive polyphenol in MLPE, may affect autophagy in HepG2 cells. This study demonstrates that MLPE is a potential anticancer agent targeting autophagy and apoptosis in cells with p53 status. Moreover, this work provides insight into the mechanism of p53 action in MLPE-induced cytotoxicity in hepatocellular carcinoma.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7607
Author(s):  
Peter Kis ◽  
Eva Horváthová ◽  
Eliška Gálová ◽  
Andrea Ševčovičová ◽  
Veronika Antalová ◽  
...  

Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.


2021 ◽  
Vol 14 (10) ◽  
pp. 969
Author(s):  
Marzia Vasarri ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Posidonia oceanica (L.) Delile is a marine plant traditionally used as an herbal medicine for various health disorders. P. oceanica leaf extract (POE) has been shown to be a phytocomplex with cell-safe bioactivities, including the ability to trigger autophagy. Autophagy is a key pathway to counteract non-alcoholic fatty liver disease (NAFLD) by controlling the breakdown of lipid droplets in the liver. The aim of this study was to explore the ability of POE to trigger autophagy and reduce lipid accumulation in human hepatoma (HepG2) cells and then verify the possible link between the effect of POE on lipid reduction and autophagy activation. Expression levels of autophagy markers were monitored by the Western blot technique in POE-treated HepG2 cells, whereas the extent of lipid accumulation in HepG2 cells was assessed by Oil red O staining. Chloroquine (CQ), an autophagy inhibitor, was used to study the relationship between POE-induced autophagy and intracellular lipid accumulation. POE was found to stimulate an autophagy flux over time in HepG2 cells by lowering the phosphorylation state of ribosomal protein S6, increasing Beclin-1 and LC3-II levels, and decreasing p62 levels. By blocking autophagy with CQ, the effect of POE on intracellular lipid accumulation was clearly reversed, suggesting that the POE phytocomplex may reduce lipid accumulation in HepG2 cells by activating the autophagic process. This work indicates that P. oceanica may be considered as a promising molecule supplier to discover new natural approaches for the management of NAFLD.


2021 ◽  
Vol 32 ◽  
pp. S190
Author(s):  
H. Chen ◽  
Y. Li ◽  
Y. Li ◽  
Y. Wu ◽  
Y. Chen ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 508
Author(s):  
Mei-Hwa Lee ◽  
James L. Thomas ◽  
Jin-An Li ◽  
Jyun-Ren Chen ◽  
Tzong-Liu Wang ◽  
...  

Programmed death-ligand 1 protein (PD-L1) has been posited to have a major role in suppressing the immune system during pregnancy, tissue allografts, autoimmune disease and other diseases, such as hepatitis. Photodynamic therapy uses light and a photosensitizer to generate singlet oxygen, which causes cell death (phototoxicity). In this work, photosensitizers (such as merocyanine) were immobilized on the surface of magnetic nanoparticles. One peptide sequence from PD-L1 was used as the template and imprinted onto poly(ethylene-co-vinyl alcohol) to generate magnetic composite nanoparticles for the targeting of PD-L1 on tumor cells. These nanoparticles were characterized using dynamic light scattering, high-performance liquid chromatography, Brunauer-Emmett-Teller analysis and superconducting quantum interference magnetometry. Natural killer-92 cells were added to these composite nanoparticles, which were then incubated with human hepatoma (HepG2) cells and illuminated with visible light for various periods. The viability and apoptosis pathway of HepG2 were examined using a cell counting kit-8 and quantitative real-time polymerase chain reaction. Finally, treatment with composite nanoparticles and irradiation of light was performed using an animal xenograft model.


Author(s):  
Takashi Hashimoto ◽  
Weitao Shang ◽  
Kazuki Kanazawa

Artepillin C, 3, 5-diprenyl-4-hydroxycinnamic acid, is one of the bioactive constituents in Brazilian propolis. In the present study, the anticarcinogenic activity of this compound was investigated in human hepatoma HepG2 cells. Artepillin C inhibited the cell proliferation in a dose- and time-dependent manner accompanied by G0/G1 phase arrest in the cell cycle. This compound caused a decrease in the phosphorylation levels of the retinoblastoma protein at Ser780 and Ser807/811 and a decrease in the kinase activity of the cyclinD and CDK4 complex without any change in these protein levels. Artepillin C increased the protein level of p27Kip1, known as a CDK inhibitor. This up-regulation was regulated by both the transcriptional and post-transcriptional levels, i.e., the treatment increased the mRNA of p27Kip1 and decreased the proteosome activity. Thus, artepillin C induces cell cycle arrest at G0/G1 phase accompanied by up-regulation of p27Kip1, resulting in the inhibition of cell proliferation in HepG2 cells. This study suggested that artepillin C will be a promising anti-cancer agent against hepatoma cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nhat Minh Phan ◽  
Thi Hong Tuoi Do ◽  
Le Thanh Tuyen Nguyen ◽  
Trong Tuan Nguyen ◽  
Quoc Luan Ngo ◽  
...  

The study aims to determine the hepatoprotective effect of n-hexane, ethyl acetate, and methanol extracts of the leaves and stems of two Cleome species against carbon tetrachloride- (CCl4-) induced liver toxicity both in vitro using human hepatoma (HepG2) cells and in vivo in rats as well as the hepatoprotective property of all isolated compounds on HepG2. After 72 h of treatment, at the concentrations of 25, 50, and 100 μg/mL, the methanol of C. chelidonii stems (CCSM) ranged from 18.6% to 20.8%, whereas the methanol of C. chelidonii stems (CVSM) increased from 12.3% to 17.2% cell viability. The results show that CCSM and CVSM significantly expressed in vitro hepaprotective activity on HepG2. Therefore, the animals were daily treated with these extracts at the doses of 15, 30, and 45 mg/kg body weight for 5 days, and CCl4 was injected (2 ml/kg body weight, i.p.) on the 2nd and 3rd days. Levels of aspartate aminotransferase (ALT) and alanine aminotransferase (AST) in the blood were measured and compared to the silymarin control. The treatments with CCSM and CVSM (30, and 45 mg/kg) possessed significant hepatoprotection and were comparable with the activity of silymarin. Further, phytochemical studies of these ones were conducted and led to the identification of eight flavonoids: visconoside A (1), visconoside B (2), quercetin 3-O-β-D-glucopyranoside 7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-β-D-glucopyranoside 7-O-α-L-rhamnopyranoside (4), cleomeside A (5), cleomeside B (6), cleomeside C (7), and quercetin-3-O-[β-D-glucopyranosyl-(1⟶2)]-α-L-rhamnopyranoside 7-O-α-L-rhamnopyranoside (8). Two major flavonoids (1 and 4) displayed significant hepatoprotective property (at the concentration of 100 μM, the prevention percentage values were 66.5% and 74.2%, respectively, compared to the quercetin control, with value of 80.3%).


Sign in / Sign up

Export Citation Format

Share Document