Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium

2018 ◽  
Vol 504 (1) ◽  
pp. 40-45
Author(s):  
Geeta Deka ◽  
Sakshibeedu R. Bharath ◽  
Handanhal Subbarao Savithri ◽  
Mathur Ramabhadrashastry Narasimha Murthy
2019 ◽  
Vol 167 (3) ◽  
pp. 315-322
Author(s):  
An-Ning Feng ◽  
Chih-Wei Huang ◽  
Chi-Huei Lin ◽  
Yung-Lung Chang ◽  
Meng-Yuan Ni ◽  
...  

Abstract 4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism, catalysing the oxidation of 4-hydroxyphenylpyruvate to homogentisate. Genetic deficiency of this enzyme causes type III tyrosinaemia. The enzyme comprises two barrel-shaped domains formed by the N- and C-termini, with the active site located in the C-terminus. This study investigated the role of the N-terminus, located at the domain interface, in HPPD activity. We observed that the kcat/Km decreased ∼8-fold compared with wild type upon removal of the 12 N-terminal residues (ΔR13). Interestingly, the wild-type level of activity was retained in a mutant missing the 17 N-terminal residues, with a kcat/Km 11-fold higher than that of the ΔR13 mutant; however, the structural stability of this mutant was lower than that of wild type. A 2-fold decrease in catalytic efficiency was observed for the K10A and E12A mutants, indicating synergism between these residues in the enzyme catalytic function. A molecular dynamics simulation showed large RMS fluctuations in ΔR13 suggesting that conformational flexibility at the domain interface leads to lower activity in this mutant. These results demonstrate that the N-terminus maintains the stability of the domain interface to allow for catalysis at the active site of HPPD.


RSC Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 5325-5337 ◽  
Author(s):  
Lubna Maryam ◽  
Shamsi Khalid ◽  
Abid Ali ◽  
Asad U. Khan

Mutations of amino acid residues present near active site decrease the catalytic efficiency of beta lactamase enzymes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1734-1734 ◽  
Author(s):  
Alireza R. Rezaie

Relative to chymotrypsin, the 60-loop of thrombin contains 8–9 insertion residues which are believed to be partly responsible for the restricted substrate and inhibitor specificity of thrombin. Previous deletion of 3–4 residues of this loop (des-PPW and des-YPPW) dramatically impaired the activity of thrombin toward antithrombin, protein C and fibrinogen, implicating a key role for the productive interaction of these residues with the target macromolecules. To further investigate the role of this loop, we expressed a mutant of thrombin in which all 8 insertion residues (Tyr-Pro-Pro-Trp-Asp-Lys-Asn-Phe) of the 60-loop were deleted (des-60-loop). In contrast to the partially deleted loop mutants, we discovered that des-60-loop thrombin cleaved small synthetic substrates, clotted purified fibrinogen, and activated protein C with a near normal catalytic efficiency; however, its activity toward cofactors V and VIII was impaired ~2–4-fold. Further studies revealed that the reactivity of des-60-loop with antithrombin is not impaired, but rather improved ~2-fold. Remarkably, the mutant could also activate prothrombin to thrombin. These results suggest that the 60-loop plays a key role in regulating the specificity of thrombin by shielding the active-site pocket; however, its productive interaction with the target molecules may not be as critical for the catalytic function of thrombin as has been speculated in previous reports.


2011 ◽  
Vol 440 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Ru-Juan Liu ◽  
Min Tan ◽  
Dao-Hai Du ◽  
Bei-Si Xu ◽  
Gilbert Eriani ◽  
...  

A large insertion domain called CP1 (connective peptide 1) present in class Ia aminoacyl-tRNA synthetases is responsible for post-transfer editing. LeuRS (leucyl-tRNA synthetase) from Aquifex aeolicus and Giardia lamblia possess unique 20 and 59 amino acid insertions respectively within the CP1 that are crucial for editing activity. Crystal structures of AaLeuRS-CP1 [2.4 Å (1 Å=0.1 nm)], GlLeuRS-CP1 (2.6 Å) and the insertion deletion mutant AaLeuRS-CP1Δ20 (2.5 Å) were solved to understand the role of these insertions in editing. Both insertions are folded as peripheral motifs located on the opposite side of the proteins from the active-site entrance in the CP1 domain. Docking modelling and site-directed mutagenesis showed that the insertions do not interact with the substrates. Results of molecular dynamics simulations show that the intact CP1 is more dynamic than its mutant devoid of the insertion motif. Taken together, the data show that a peripheral insertion without a substrate-binding site or major structural role in the active site may modulate catalytic function of a protein, probably from protein dynamics regulation in two respective LeuRS CP1s. Further results from proline and glycine mutational analyses intended to reduce or increase protein flexibility are consistent with this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document