RAGE signaling antagonist suppresses mouse macrophage foam cell formation

2021 ◽  
Vol 555 ◽  
pp. 74-80
Author(s):  
Nontaphat Leerach ◽  
Seiichi Munesue ◽  
Ai Harashima ◽  
Kumi Kimura ◽  
Yu Oshima ◽  
...  
Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 832
Author(s):  
Michishige Terasaki ◽  
Hironori Yashima ◽  
Yusaku Mori ◽  
Tomomi Saito ◽  
Yoshie Shiraga ◽  
...  

Glucose-dependent insulinotropic polypeptide (GIP) has been reported to have an atheroprotective property in animal models. However, the effect of GIP on macrophage foam cell formation, a crucial step of atherosclerosis, remains largely unknown. We investigated the effects of GIP on foam cell formation of, and CD36 expression in, macrophages extracted from GIP receptor-deficient (Gipr−/−) and Gipr+/+ mice and cultured human U937 macrophages by using an agonist for GIP receptor, [D-Ala2]GIP(1–42). Foam cell formation evaluated by esterification of free cholesterol to cholesteryl ester and CD36 gene expression in macrophages isolated from Gipr+/+ mice infused subcutaneously with [D-Ala2]GIP(1–42) were significantly suppressed compared with vehicle-treated mice, while these beneficial effects were not observed in macrophages isolated from Gipr−/− mice infused with [D-Ala2]GIP(1–42). When macrophages were isolated from Gipr+/+ and Gipr−/− mice, and then exposed to [D-Ala2]GIP(1–42), similar results were obtained. [D-Ala2]GIP(1–42) attenuated ox-LDL uptake of, and CD36 gene expression in, human U937 macrophages as well. Gene expression level of cyclin-dependent kinase 5 (Cdk5) was also suppressed by [D-Ala2]GIP(1–42) in U937 cells, which was corelated with that of CD36. A selective inhibitor of Cdk5, (R)-DRF053 mimicked the effects of [D-Ala2]GIP(1–42) in U937 cells. The present study suggests that GIP could inhibit foam cell formation of macrophages by suppressing the Cdk5-CD36 pathway via GIP receptor.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiaochun Xia ◽  
Yang Li ◽  
Qiang Su ◽  
Zhengrong Huang ◽  
Yuemao Shen ◽  
...  

2017 ◽  
Vol 49 (11) ◽  
pp. e388-e388 ◽  
Author(s):  
Hai-Feng Zhang ◽  
Mao-Xiong Wu ◽  
Yong-Qing Lin ◽  
Shuang-Lun Xie ◽  
Tu-Cheng Huang ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Wonkyoung Cho ◽  
Young Eun Yoon ◽  
Kihwan Kwon ◽  
Young Mi Park

Background: Excessive lipid accumulation by macrophages plays a crucial role in atherosclerosis. Foam cells are generated by uncontrolled uptake of modified LDL, especially oxidized LDL (oxLDL), and/or impaired cholesterol efflux mediated by ATP-binding cassette (ABC) family transporters, ABCA-1 and ABCG-1. Shockwave, elicited by transient pressure disturbance, have been used for extracorporeal lithotripsy or for treating musculoskeletal disorders. Our current study suggests an evidence that shockwave may have anti-atherogenic effect by inhibiting foam cell formation. Methods/Results: Murine peritoneal macrophages were exposed to shockwaves at 0.04 mJ/mm 2 with 1000 impulses, lysed after 6, 18 and 24 hours, and tested for expression of ABCA-1 and ABCG-1. The western blot showed that shockwave induced 2.0-2.8 fold increase of ABCA-1 and ABCG-1 within 18-24 hours. mRNA levels of ABCA-1 and ABCG-1 were also increased by shockwave with 2.0 fold of peak increase in 18 hours. The increased expression of ABCA-1 and ABCG-1 was mediated by phosphorylation of ERK 1/2 (Tyr204). Western blot analysis revealed that shockwave induced phosphorylation of ERK 1/2 (Tyr204) in murine macrophages. Shockwave-induced increase of ABCA-1 and ABCG-1 was blocked by U0126 (40µM), a specific inhibitor for ERK. Oil-red O staining showed that macrophages exposed to shockwave had 25% less intracellular lipid droplets. Intracellular cholesterol measured by cholesterol oxidase and esterase revealed that macrophages exposed to shockwave had 23% less intracellular cholesterol when incubated with oxLDL (50µg/ml) for 16 hours. In vitro migration assays including modified Boyden chamber migration assay and scratch wound healing migration assay showed that macrophages exposed to shockwave had 1.2 fold more migration and had diminished migration-inhibitory effect of oxLDL. Conclusions: Shockwave reduces macrophage foam cell formation via ERK-mediated increase of ABCA-1 and ABCG-1 mediating lipid efflux and promotes macrophage migration which may induce macrophage egress from atherosclerotic lesion. Our study suggests anti-atherogenic effects of shockwave as a potential treatment modality for atherosclerosis.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Toshihiro Imamura ◽  
Iain S Hartley ◽  
Abdull J Massri ◽  
Orit Poulsen ◽  
Dan Zhou ◽  
...  

Background: Obstructive sleep apnea syndrome (OSAS) is a common sleeping disorder characterized by intermittent hypoxia (IH). Clinical studies have previously shown an independent association between obstructive sleep apnea and atherosclerosis. Furthermore, it has been previously shown that such a predisposition to atherosclerosis in OSAS patient can be caused by various inflammatory mediators, particularly the NF-kappa B (NF-kB) pathway. Foam cells or lipid-laden macrophages in the atherosclerotic lesion have been well documented as a hallmark of atherosclerosis; however, the contribution of IH, such as in OSAS, to foam cell formation is not yet fully understood. Previous observations have led us to hypothesized that IH induces macrophage foam cell formation due to the activation of NF-kappa B pathway. Methods: Myeloid restricted IKK-beta deleted mice were generated by a Cre/lox recombination system to inactivate the NF-kB pathway in macrophages. Thioglycollate-elicited peritoneal macrophages were incubated with 200 μg/ml of low-density lipoprotein and simultaneously exposed to either IH (Normoxia: 8min, 0.5% O2: 10min) or normoxia for 24 hours. After exposure, the extent of foam cell formation was assessed by quantification of intracellular cholesterol. Finally, we compared the differences in gene expression using RNA-seq between wild type and IKK-beta deleted macrophages exposed to either IH or normoxia for 24 hours. Results: IH significantly increased total cholesterol in wild type macrophages (63.4±3.3 μg/mg of cellular protein, n=9) in comparison to normoxia (51.2±1.6). Interestingly, such increase in intracellular cholesterol in response to IH-exposure was abolished by IKK-beta deletion (IH 52.4±1.1; normoxia 50.0±1.6 n=8), suggesting that NF-kB pathway regulated gene expression is critical for IH-induced foam cell formation. Indeed, we have found that NF-kB knockout abolished IH-induced expressional alterations in 364 genes, which are potential candidates for regulating intracellular cholesterol. Conclusion: NF-kB activation plays a critical role in IH-induced macrophage foam cell formation.


2018 ◽  
Vol 132 (23) ◽  
pp. 2493-2507 ◽  
Author(s):  
Yuki Sato ◽  
Rena Watanabe ◽  
Nozomi Uchiyama ◽  
Nana Ozawa ◽  
Yui Takahashi ◽  
...  

Vasostatin-1, a chromogranin A (CgA)-derived peptide (76 amino acids), is known to suppress vasoconstriction and angiogenesis. A recent study has shown that vasostatin-1 suppresses the adhesion of human U937 monocytes to human endothelial cells (HECs) via adhesion molecule down-regulation. The present study evaluated the expression of vasostatin-1 in human atherosclerotic lesions and its effects on inflammatory responses in HECs and human THP-1 monocyte-derived macrophages, macrophage foam cell formation, migration and proliferation of human aortic smooth muscle cells (HASMCs) and extracellular matrix (ECM) production by HASMCs, and atherogenesis in apolipoprotein E-deficient (ApoE−/−) mice. Vasostatin-1 was expressed around Monckeberg’s medial calcific sclerosis in human radial arteries. Vasostatin-1 suppressed lipopolysaccharide (LPS)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HECs. Vasostatin-1 suppressed inflammatory M1 phenotype and LPS-induced interleukin-6 (IL-6) secretion via nuclear factor-κB (NF-κB) down-regulation in macrophages. Vasostatin-1 suppressed oxidized low-density lipoprotein (oxLDL)-induced foam cell formation associated with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) and CD36 down-regulation and ATP-binding cassette transporter A1 (ABCA1) up-regulation in macrophages. In HASMCs, vasostatin-1 suppressed angiotensin II (AngII)-induced migration and collagen-3 and fibronectin expression via decreasing ERK1/2 and p38 phosphorylation, but increased elastin expression and matrix metalloproteinase (MMP)-2 and MMP-9 activities via increasing Akt and JNK phosphorylation. Vasostatin-1 did not affect the proliferation and apoptosis in HASMCs. Four-week infusion of vasostatin-1 suppressed the development of aortic atherosclerotic lesions with reductions in intra-plaque inflammation, macrophage infiltration, and SMC content, and plasma glucose level in ApoE−/− mice. These results indicate the inhibitory effects of vasostatin-1 against atherogenesis. The present study provided the first evidence that vasostatin-1 may serve as a novel therapeutic target for atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document