Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]

2019 ◽  
Vol 19 ◽  
pp. 101173 ◽  
Author(s):  
Sivabalan Karthik ◽  
Gadamchetty Pavan ◽  
Veda Krishnan ◽  
Selvam Sathish ◽  
Markandan Manickavasagam
Author(s):  
Faheema Khan

The present study was conducted to evaluate the differences in photosynthetic parameters and antioxidant enzyme activity among two genotypes of soybean (Glycine max L.) in response to salinity stress. Ten-day-old seedlings, grown hydroponically, were treated with 0, 25, 50, 75, 100, 125 and 150 mM NaCl for 7 days and analysed for the traits as biomarkers for identification of salt-tolerant soybean genotype. It was observed that NaCl stress caused severe impairments in photosynthetic rate, chlorophyll fluorescence and chlorophyll content in both the genotypes, but the damage were much more pronounced in salt-sensitive genotype VL SOYA-47. Moreover, chlorophyll fluorescence measurements showed higher non-photochemical quenching in genotype VL SOYA-47 and lower in genotype VL SOYA-21. The antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) was observed much higher in VL SOYA-21 than in VL SOYA-47 at various levels of NaCl treatments. From the results, it could be suggested that VL SOYA-21 is the salt tolerant and VL SOYA-47 is a salt sensitive soybean genotype. The tolerance capacity of VL SOYA-21 against NaCl stress can be related with the ability of this genotype in possessing vital photosynthetic system and ROS scavenging capacity.


Author(s):  
Nurul Aini ◽  
Syekhfani Syekhfani ◽  
Wiwin Sumiya Dwi Yamika ◽  
Runik Dyah P. ◽  
Adi Setiawan

Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 45 ◽  
Author(s):  
Juwarno Juwarno ◽  
Siti Samiyarsih

Current study was aimed to explore both anatomical and molecular responses of 3 soy bean cultivars (Mahameru, Slamet and Detam) which was given salinity stress. Data of the Mahameru cultivar showed that the widest  stomata  on upper epiderm 11.38 µm, the thickest upper epiderm was 10.71µm, but  the thickest of lower epiderm was only 9.98 µm, the highest density of stomata on lower epiderm was 13.66 per mm2 leaf area, and the thickest mesophyll was 110.37 µm. Molecular marker applying OPA-2 primer with RAPD technique showed the Detam and Slamet cultivars were having different bands one to each other even with the Mahameru cultivar. While the application of OPA-4 primer with the same technique showed there were no genetically different on Mahameru cultivar between control and  treatment 80 mM NaCl. The OPA-8 primer showed that the control block of Slamet cultivar  was different from either control block of others as well as treatment block of 80 mM NaCl. The use of OPA-18 primer showed that the Slamet cultivar of the control block  and so its 80 mM NaCl block was different from Detam and Mahameru, where the 500th base of Slamet cultivar did not have DNA band.


Sign in / Sign up

Export Citation Format

Share Document