scholarly journals Microencapsulation of Persian gum as a novel wall material for the fast-release of cinnamon essential oil in the simulated saliva medium: Characterization of microcapsules and modeling the kinetics of release

Author(s):  
Mostafa Shahidi Noghabi ◽  
Mohammad Molaveisi
1992 ◽  
Vol 287 (3) ◽  
pp. 767-774 ◽  
Author(s):  
S Corbalan-Garcia ◽  
J A Teruel ◽  
J C Gomez-Fernandez

Sarcoplasmic reticulum Ca(2+)-ATPase has previously been shown to bind and dissociate two Ca2+ ions in a sequential mode. This behaviour is confirmed here by inducing sequential Ca2+ dissociation with Ruthenium Red. Ruthenium Red binds to sarcoplasmic reticulum vesicles (6 nmol/mg) with a Kd = 2 microM, producing biphasic kinetics of Ca2+ dissociation from the Ca(2+)-ATPase, decreasing the affinity for Ca2+ binding. Studies on the effect of Ca2+ on Ruthenium Red binding indicate that Ruthenium Red does not bind to the high-affinity Ca(2+)-binding sites, as suggested by the following observations: (i) micromolar concentrations of Ca2+ do not significantly alter Ruthenium Red binding to the sarcoplasmic reticulum; (ii) quenching of the fluorescence of fluorescein 5′-isothiocyanate (FITC) bound to Ca(2+)-ATPase by Ruthenium Red (resembling Ruthenium Red binding) is not prevented by micromolar concentrations of Ca2+; (iii) quenching of FITC fluorescence by Ca2+ binding to the high-affinity sites is achieved even though Ruthenium Red is bound to the Ca(2+)-ATPase; and (iv) micromolar Ca2+ concentrations prevent inhibition of the ATP-hydrolytic capability by dicyclohexylcarbodi-imide modification, but Ruthenium Red does not. However, micromolar concentrations of lanthanides (La3+ and Tb3+) and millimolar concentrations of bivalent cations (Ca2+ and Mg2+) inhibit Ruthenium Red binding as well as quenching of FITC-labelled Ca(2+)-ATPase fluorescence by Ruthenium Red. Studies of Ruthenium Red binding to tryptic fragments of Ca(2+)-ATPase, as demonstrated by ligand blotting, indicate that Ruthenium Red does not bind to the A1 subfragment. Our observations suggest that Ruthenium Red might bind to a cation-binding site in Ca(2+)-ATPase inducing fast release of the last bound Ca2+ by interactions between the sites.


LWT ◽  
2017 ◽  
Vol 75 ◽  
pp. 316-322 ◽  
Author(s):  
Shengjiang Zhang ◽  
Min Zhang ◽  
Zhongxiang Fang ◽  
Yaping Liu

Author(s):  
Maghsoud Besharati ◽  
Valiollah Palangi ◽  
Mojtaba Moaddab ◽  
Zabihollah Nemati ◽  
Alberto Barababosa Pliego ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document