Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP)

2007 ◽  
Vol 73 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Manchao Zhang ◽  
Xueliang Fang ◽  
Hongpeng Liu ◽  
Shaomeng Wang ◽  
Dajun Yang
2007 ◽  
Vol 177 (4S) ◽  
pp. 94-94
Author(s):  
John A. Watson ◽  
Thomas J. Mueller ◽  
Geun T. Lee ◽  
Jun Hyuk Hong ◽  
Isaac Y. Kim

2011 ◽  
Vol 29 (7_suppl) ◽  
pp. 17-17
Author(s):  
Z. Liao ◽  
L. Gu ◽  
F. Shen ◽  
A. Dagvadorj ◽  
S. Gupta ◽  
...  

17 Background: There are no effective treatments for metastatic or castration resistant prostate cancer. We have shown that transcription factor Stat5a/b is constitutively active in high-grade prostate cancer, but not in normal human prostate epithelium. Stat5a/b is active in 95% of clinical castration resistant prostate cancers, and the expression of active Stat5a/b in primary prostate cancer predicts early disease recurrence. Stat5a/b is critical for the viability of prostate cancer cells in vitro and for growth of prostate xenograft tumors in nude mice. Stat5a/b synergizes with androgen receptor (AR) and Stat5a/b promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Here, we hypothesize that Stat5a/b is a molecular target for rational drug design for prostate cancer. Methods: We identified a small- molecule inhibitor of Stat5a/b dimerization by structure-based virtual screen from a database of 30 million chemical structures. The efficacy of the Stat5a/b inhibitor was determined by reporter gene assays, dimerization by co-immunoprecipitations, nuclear translocation by cytochemistry and binding to DNA by EMSA. Cell viability was analyzed by MTT assay. Results: The novel Stat5a/b inhibitor IST5-002 inhibited transcriptional activity of Stat5a/b at IC50 of 1.5 μ M for Stat5a and 3.5 μ M for Stat5b, but not of Stat3 in prostate cancer cells. IST5-002 inhibited dimerization, nuclear translocation, and binding of Stat5a/b to the Stat5 DNA consensus sequence. Furthermore, IST5-002 inhibited expression of Stat5a/b target gene cyclin D1, and induced massive apoptosis of DU145, CWR22Rv1 and LNCaP human prostate cancer cells. IST5-002 blocked prostate cancer xenograft tumor growth in nude mice and induced death in clinical prostate cancers ex vivo in 3D organ cultures. Conclusions: We have identified a small molecule Stat5a/b inhibitor IST5-002 for therapy development for prostate cancer. Future work will focus on chemical modifications of IST5-002 to achieve IC50 below 1 μ M and oral administration. No significant financial relationships to disclose.


2021 ◽  
pp. 112637
Author(s):  
Aderonke Ajayi-Smith ◽  
Pauline van der Watt ◽  
Nonkululeko Mkwanazi ◽  
Sarah Carden ◽  
John O. Trent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document