Dialysis shake flask for effective screening in fed-batch mode

2012 ◽  
Vol 69 ◽  
pp. 182-195 ◽  
Author(s):  
Cornelia Bähr ◽  
Bernd Leuchtle ◽  
Christian Lehmann ◽  
Julia Becker ◽  
Markus Jeude ◽  
...  
Author(s):  
Sri Lakshmi Puliga ◽  
Suhas Handa ◽  
Sathyanarayana N Gummadi ◽  
Mukesh Doble

Curdlan is a water insoluble polysaccharide composed exclusively of ?-(1, 3) linked glucose residues. Agrobacterium sp. is known to produce extracellular curdlan under nitrogen-limited conditions. The purpose of this study was to investigate the effects of pH, amounts of ammonium, sucrose and trace elements, and time the addition of sucrose, ammonium and uracil on the production of curdlan in a shake flask and to further scale-up the process to a 5 L fermentor. A maximum of 48.7 g L-1 of curdlan was obtained in a shake flask when 150 and 1.4 g L-1 of sucrose and ammonium were used at the initial pH of 6.5. The production was enhanced to 57 g L-1 by adding one third of sucrose and 1 g L-1 of uracil at the 48th h in a fed batch mode. The process was scaled up to a 5 L bioreactor in a batch mode where the oxygen transfer rate was higher (0.192 mg L-1s-1) when compared to that in the shake flask (0.096 mg L-1s-1). Curdlan production was 58 g L-1 in the bioreactor, which was higher than the shake flask under batch conditions (48.7 g L-1). The viscosity average molecular weight of the curdlan produced was found to be 1.4 × 105.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tobias Habicher ◽  
Tobias Klein ◽  
Jacqueline Becker ◽  
Andreas Daub ◽  
Jochen Büchs

Abstract Background Substrate-limited fed-batch conditions have the favorable effect of preventing overflow metabolism, catabolite repression, oxygen limitation or inhibition caused by elevated substrate or osmotic concentrations. Due to these favorable effects, fed-batch mode is predominantly used in industrial production processes. In contrast, screening processes are usually performed in microtiter plates operated in batch mode. This leads to a different physiological state of the production organism in early screening and can misguide the selection of potential production strains. To close the gap between screening and production conditions, new techniques to enable fed-batch mode in microtiter plates have been described. One of these systems is the ready-to-use and disposable polymer-based controlled-release fed-batch microtiter plate (fed-batch MTP). In this work, the fed-batch MTP was applied to establish a glucose-limited fed-batch screening procedure for industrially relevant protease producing Bacillus licheniformis strains. Results To achieve equal initial growth conditions for different clones with the fed-batch MTP, a two-step batch preculture procedure was developed. Based on this preculture procedure, the standard deviation of the protease activity of glucose-limited fed-batch main culture cultivations in the fed-batch MTP was ± 10%. The determination of the number of replicates revealed that a minimum of 6 parallel cultivations were necessary to identify clones with a statistically significant increased or decreased protease activity. The developed glucose-limited fed-batch screening procedure was applied to 13 industrially-relevant clones from two B. licheniformis strain lineages. It was found that 12 out of 13 clones (92%) were classified similarly as in a lab-scale fed-batch fermenter process operated under glucose-limited conditions. When the microtiter plate screening process was performed in batch mode, only 5 out of 13 clones (38%) were classified similarly as in the lab-scale fed-batch fermenter process. Conclusion The glucose-limited fed-batch screening process outperformed the usual batch screening process in terms of the predictability of the clone performance under glucose-limited fed-batch fermenter conditions. These results highlight that the implementation of glucose-limited fed-batch conditions already in microtiter plate scale is crucial to increase the precision of identifying improved protease producing B. licheniformis strains. Hence, the fed-batch MTP represents an efficient high-throughput screening tool that aims at closing the gap between screening and production conditions.


2009 ◽  
Vol 103 (6) ◽  
pp. 1095-1102 ◽  
Author(s):  
Robert Huber ◽  
Marco Scheidle ◽  
Barbara Dittrich ◽  
Doris Klee ◽  
Jochen Büchs

2020 ◽  
Vol 113 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Lin ◽  
Jing Ye ◽  
Wanchun Sun ◽  
Qiaogang Yu ◽  
Qiang Wang ◽  
...  

2007 ◽  
Vol 40 (4) ◽  
pp. 181-186
Author(s):  
Penny Dorka ◽  
Christian Fischer ◽  
Hector M. Budman ◽  
Jeno M. Scharer

Environments ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 78
Author(s):  
Rubén González ◽  
Daniel Blanco ◽  
Judith González-Arias ◽  
José García-Cascallana ◽  
Xiomar Gómez

This manuscript deals with the detailed design of a small digestion prototype intended as a commercial unit fully operational to cover the demand for decentralized treatment of wastes. These plants are highly affected by the complex nature of wastes giving rise to different operating problems that should be considered in detail. This paper describes the design and start-up strategy of a small-scale digestion plant with a volume of 8 m3 designed to operate with a hydrolysis pretreatment unit. The plant was designed to treat fruit and vegetable wastes as substrates derived from a local processing food factory. The performance of the plant during fed-batch operation was reported. The strategy of inoculating the reactor only to a third of its original volume and subsequently increasing the volume of the reactor by using the fed-batch mode was inadequate. The acid pH of the feeding substrate resulted in the application of a low organic loading rate with a volumetric variation of just 19.7 L/d. The performance of the plant was evaluated at non-steady state conditions and resulted in excessive destruction of volatile solids due to the low nitrogen content of the feeding substrate. The prototype reported a specific methane production of 232 L/kg volatile solids despite the low feeding rate supplemented.


2014 ◽  
Vol 9 (8) ◽  
pp. 749-760
Author(s):  
Yew Tam ◽  
Nazariah Zeenathul ◽  
Akhavan Morvarid ◽  
Mohd Azmi ◽  
Abdul Bahaman ◽  
...  

AbstractA study of the Mut+ phenotype for the expression of recombinant hepatitis B surface antigen (HBsAg) in Pichia pastoris strain GS115 using the pPIC3.5K vector with a two-phase fed-batch protocol in a shake flask system is described. Expression levels of HBsAg protein of 6.74 g L−1 Dry Cell Weight (DCW) and 26.07 mg L−1 of HBsAg concentration were achieved 48 h from the induction point which added to a 120 h reduction in production period in comparison with MutS expression (168 h). The use of the pPIC3.5K-HBsAg plasmid in the Mut+ phenotype enhanced the expression of HBsAg by a nearly 13 times higher volumetric productivity in the first 24 h and 35 times higher at peak production concentration. Comparison of AOX expression cassettes relative to the HBsAg gene in the role of mRNA secondary structure during translation initiation revealed that HBsAg possesses lower folding stability with AOX1 Mut+ phenotype. The results from this study demonstrated that expression of HBsAg with Mut+ AOX1 promoter is adequate as an alternative for the production of HBsAg. In addition, the AOX promoter of the Mut+ phenotype was observed to be better suited for HBsAg expression, which correlates with the ease of translation initiation under shake flask conditions.


2005 ◽  
Vol 60 (5-6) ◽  
pp. 459-466 ◽  
Author(s):  
Rüdiger Kaspera ◽  
Ulrich Krings ◽  
Michael Pescheck ◽  
Dieter Sell ◽  
Jens Schrader ◽  
...  

Selective transformations of limonene by asco- and basidiomycetes were investigated. On the shake flask scale, Penicillium citrinum hydrated R-(+)-limonene to α-terpineol [83% regioselectivity (rs), more than 80 mg 1-1 product yield], and Gongronella butleri catalysed the terminal oxidation to yield perillyl alcohol (60% rs, 16 mg 1-1). On the laboratory bioreactor scale, Penicillium digitatum produced a peak concentration of 506 mg α-terpineol 1-1 in the fed-batch mode, equivalent to a theoretical yield of 67%, and no volatile by-products were found. Fusarium proliferatum transformed R-(+)-limonene enantiospecifically to cis-(+)- carveol (98.6% ee, more than 35 mg 1-1 product yield) and S-(-)-limonene predominantly to trans-(-)-carveol (96.3% ee). Pleurotus sapidus selectively dehydrogenised the accumulating trans-(-)-carveol to the corresponding enantiopure R-(-)-carvone. The results show that a careful selection of strain and bioprocess parameters may improve both the yield and the optical purity of a desired product.


2016 ◽  
Vol 101 (5) ◽  
pp. 1877-1887 ◽  
Author(s):  
Leelaram Santharam ◽  
Ashwath Balaje Samuthirapandi ◽  
Sivanesh Nanjan Easwaran ◽  
Surianarayanan Mahadevan

Sign in / Sign up

Export Citation Format

Share Document