Linking Maximal Shear Rate and Energy Dissipation/Circulation Function in Airlift Bioreactors

2021 ◽  
pp. 108308
Author(s):  
Mateus N. Esperança ◽  
Mariane M. Buffo ◽  
Caroline E. Mendes ◽  
Guilherme Y. Rodriguez ◽  
Rodrigo Béttega ◽  
...  
2019 ◽  
Vol 42 (6) ◽  
pp. 995-1008 ◽  
Author(s):  
Mateus N. Esperança ◽  
Caroline E. Mendes ◽  
Guilherme Y. Rodriguez ◽  
Marcel O. Cerri ◽  
Rodrigo Béttega ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 31691-31704
Author(s):  
Runsong Mao ◽  
Huixing Wang ◽  
Guang Zhang ◽  
Xudan Ye ◽  
Jiong Wang

Magnetorheological gel is a material composed of magnetic particles and polyurethane. CIPs content, shear rate, shear strain amplitude and magnetic field affect damping performance. The magento-induced enhancement of energy dissipation density of MRG-60 could reach 104900%.


1999 ◽  
Vol 25 (10) ◽  
pp. 820-830 ◽  
Author(s):  
Antonio Contreras ◽  
Francisco Garcı́a ◽  
Emilio Molinaa ◽  
José C Merchuk

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 107
Author(s):  
Fabian Freiberger ◽  
Jens Budde ◽  
Eda Ateş ◽  
Michael Schlüter ◽  
Ralf Pörtner ◽  
...  

The link between hydrodynamics and biological process behavior of antibody-producing mammalian cell cultures is still not fully understood. Common methods to describe dependencies refer mostly to averaged hydrodynamic parameters obtained for individual cultivation systems. In this study, cellular effects and locally resolved hydrodynamics were investigated for impellers with different spatial hydrodynamics. Therefore, the hydrodynamics, mainly flow velocity, shear rate and power input, in a single- and a three-impeller bioreactor setup were analyzed by means of CFD simulations, and cultivation experiments with antibody-producing Chinese hamster ovary (CHO) cells were performed at various agitation rates in both reactor setups. Within the three-impeller bioreactor setup, cells could be cultivated successfully at much higher agitation rates as in the single-impeller bioreactor, probably due to a more uniform flow pattern. It could be shown that this different behavior cannot be linked to parameters commonly used to describe shear effects on cells such as the mean energy dissipation rate or the Kolmogorov length scale, even if this concept is extended by locally resolved hydrodynamic parameters. Alternatively, the hydrodynamic heterogeneity was statistically quantified by means of variance coefficients of the hydrodynamic parameters fluid velocity, shear rate, and energy dissipation rate. The calculated variance coefficients of all hydrodynamic parameters were higher in the setup with three impellers than in the single impeller setup, which might explain the rather stable process behavior in multiple impeller systems due to the reduced hydrodynamic heterogeneity. Such comprehensive insights lead to a deeper understanding of the bioprocess.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


Sign in / Sign up

Export Citation Format

Share Document