scholarly journals Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows

2006 ◽  
Vol 33 (6) ◽  
Author(s):  
David A. Hebert ◽  
Stephen M. de Bruyn Kops
2017 ◽  
Vol 34 (6) ◽  
pp. 1387-1390 ◽  
Author(s):  
Ann E. Gargett

AbstractGreene et al. revisit the suggestion that the turbulent kinetic energy dissipation rate could be estimated through a “large-eddy estimate,” employing acoustic measurements of velocity fields associated with the largest energy-containing scales of ocean turbulence. While the large-eddy estimate as originally proposed used vertical velocity and a vertical eddy length scale, Greene et al. chose instead to substitute a horizontal length scale for the latter. This comment argues that combining a horizontal scale for length with a vertical velocity scale produces a large-eddy estimate of the dissipation rate that is accurate only if the energy-containing eddies are isotropic, and that this condition is highly unlikely in naturally occurring ocean turbulence, subject as it is to influences of stratification, vertical shear, and/or the presence of horizontal boundaries. The problem is documented using data from a large-eddy simulation of Langmuir supercells.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Bian Tian ◽  
Huafeng Li ◽  
Ning Yang ◽  
Yulong Zhao ◽  
Pei Chen ◽  
...  

Purpose It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean populations and transmission of the ocean energy, especially the measurement of turbulence flow velocity. So, it is particularly urgent to provide a high-sensitivity, low-cost and reliable fluid flow sensor for industry and consumer product application. This paper aims to design a micro fluid flow sensor with a cross beam membrane structure. The designed sensor can detect the fluid flow velocity and has a low kinetic energy dissipation rate. Design/methodology/approach In this paper, a micro fluid flow sensor with a cross beam membrane structure is designed to measure the ocean turbulence flow velocity. The design, simulation, fabrication and measurement of the designed sensor are discussed. By testing the simply packaged sensor in the fluid flow and analyzing the experiments data, the results show that the designed sensor has favorable performance. Findings The paper describes the tests of the designed sensor, and the experimental results show that the designed sensor can measure the fluid flow velocity and has a sensitivity of 11.12 mV/V/(m/s)2 and a low kinetic energy dissipation rate in the range of 10-6-10-4 W/kg. Originality/value This paper provides a micro-electro-mechanical systems fluid flow sensor used to measure ocean turbulence flow velocity.


2015 ◽  
Vol 32 (2) ◽  
pp. 318-333 ◽  
Author(s):  
A. D. Greene ◽  
P. J. Hendricks ◽  
M. C. Gregg

AbstractTurbulent microstructure and acoustic Doppler current profiler (ADCP) data were collected near Tacoma Narrows in Puget Sound, Washington. Over 100 coincident microstructure profiles have been compared to ADCP estimates of turbulent kinetic energy dissipation rate (ϵ). ADCP dissipation rates were calculated using the large-eddy method with theoretically determined corrections for sensor noise on rms velocity and integral-scale calculations. This work is an extension of Ann Gargett’s approach, which used a narrowband ADCP in regions with intense turbulence and strong vertical velocities. Here, a broadband ADCP is used to measure weaker turbulence and achieve greater horizontal and vertical resolution relative to the narrowband ADCP. Estimates of ϵ from the Modular Microstructure Profiler (MMP) and broadband ADCP show good quantitative agreement over nearly three decades of dissipation rate, 3 × 10−8–10−5 m2 s−3. This technique is most readily applied when the turbulent velocity is greater than the ADCP velocity uncertainty (σ) and the ADCP cell size is within a factor of 2 of the Thorpe scale. The 600-kHz broadband ADCP used in this experiment yielded a noise floor of 3 mm s−1 for 3-m vertical bins and 2-m along-track average (≈four pings), which resulted in turbulence levels measureable with the ADCP as weak as 3 × 10−8 m2 s−3. The value and trade-off of changing the ADCP cell size, which reduces noise but also changes the ratio of the Thorpe scale to the cell size, are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document